Highly Flexible Fossil Power Plants as Backbone for Future Generation Portfolio

Dr. Nicolas Vortmeyer, Siemens AG

Energy Research in Europe: Germany’s Contribution to the SET-Plan
19 Mar 2012, Berlin
Agenda

- Flexibility challenge in today’s and future market
- Status:
 Operational flexibility of fossil power plants
- Way forward:
 Storage application as innovative approach to enhance flexibility
- EU dimension
R&D for Products and Solutions to Manage the Whole Energy Matrix

Central Power Plants
- Large power plants provide back-up for intermittent wind and solar
- Greater efficiency of conventional fossil power plants to meet supply gaps

Grids
- Renewable power requires stronger transmission infrastructure

Distributed Power Generation
- Innovative technologies at manifold feed-in-points
- Improved control software for market integration
- Adapted to local conditions

Prosumers
- Households both produce and consume power as small-scale market players
- Rooftop PVs and electric cars set for global breakthrough

Storage
- Key enabler for integration of renewables
- Avoid shutdowns and enhance grid stability
Boundary Conditions and Challenges in Today’s and Future Energy Generation Portfolio

Market Trends *)
- Aim to increase share of renewable energies to 35% in 2020, 80% in 2050
- Phase out of nuclear energy by 2022
- Proposed reduction of renewable subsidies

*) typical for Germany

Technical Challenges
- Fluctuating renewable sources
- Lack of dispatchability
- Not continuously available
- Challenge of forecast accuracy

Economic Perspective
- High price fluctuations daily and over the year

Market Trends
- Continuous increase of renewable Fleet
- Continuous demand for reliable fossil generation backbone
- Challenge to flexibility and profitability of fossil power plants

EEX price €/MW (July 16, 2011)

EEX price €/MW (Feb. 6, 2012)

Energy Research in Europe: Germany’s Contribution to the SET-Plan, 19 Mar 2012, Dr. Vortmeyer
Combined Cycle Power Plants – Operational Flexibility at Highest Efficiency

- Highest efficiency throughout the whole load range
- Optimized start up and shutdown operation

- Fast starts
- Load ramps
- Park load

- Load ramps
- Stable operation in case of grid incidents
- Backup power

- More than half a GW in less than half an hour
- Down-load to minimum or shut-down in less than 30 minutes
- Load changes of more than 200 MW in less than 7 minutes
Steam Power Plants –
Change in Design Philosophy

Leaving Base Load ...
Future Steam Power Plants will be operated mainly in part load (~ 50 to 90%).

Component and plant design to achieve highest efficiency not longer focused on 90 to 100% load.

Measures to increase part-load efficiencies are available, e.g.
- Part-load design applying modifications at ST
- Increasing main steam temperatures at part load (@ constant mechanical load of piping, casing, valves, etc.),
- Increasing the final boiler feed water temperature (additional pre-heating at part-load operation),
- Combustion control (mitigation of CO peaks at part-load)

Principle potential also for retrofitting.
<table>
<thead>
<tr>
<th>Large-scale electricity storage options and technical feasibility</th>
<th>Concepts to integrate storage and existing fossil plant infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressed Air (CAES)</td>
<td>✓ combination questionable?</td>
</tr>
<tr>
<td></td>
<td>✓ loss of power plant functionality (no fossil operation)</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>✓ use of CCPP for re-electrification</td>
</tr>
<tr>
<td></td>
<td>✓ store hydrogen into natural gas grid</td>
</tr>
<tr>
<td>Electrochemical (Battery)</td>
<td>✓ optimize load behavior of power plant</td>
</tr>
<tr>
<td></td>
<td>✓ higher flexibility: peak power and ramp rates</td>
</tr>
<tr>
<td>Thermal</td>
<td>✓ use of existing steam cycle</td>
</tr>
<tr>
<td></td>
<td>✓ steam / heat for co-generation application (CHP)</td>
</tr>
</tbody>
</table>

Very expensive as stand-alone storage solution

Cost reduction by combining storage with existing fossil power plants

(add-on: increasing flexibility of conventional fleet)
Hydrogen Production and Re-electrification in Existing Power Plants

Siemens PEM electrolyser
- Highly dynamic for fast response on fRE (300% over-load)
- Pressurized system for optimal storage/direct use (50 bar)
- 100 kW demonstrator(s) in 2012
- 10 to 100 MW units in 2016-2018

Storage in
- Tanks, caverns, chemicals
- Natural gas grid (current discussion of limits for all consumers – DENA, EU-Turbines)

Re-electrification by co-firing in existing gas turbines together with
- natural gas in conventional technologies (up to recent generations)
- synthesis gas in IGCC and IGCC with CCS

Applications for mobility/ industrial/ chemical processes (e.g. for fuels in combination with CO₂)
Combination of CCPP with Electrochemical Energy Storage Offers Added Customer Value

- Shorter response time of the CCPP
- Higher system flexibility
 - peak power
 - faster ramp rates
- Negative balancing power

Technical solution by innovative less-expensive electrochemical batteries required, e.g. rechargeable metal/air
Thermal Storage –
Use of Existing Plant Components

Generator in fossil power plants can be operated as electrical motor.

When turned by generator in motor operation, turbomachinery losses cause conversion of electrical energy into hot gas turbine exhaust (with efficiencies close to 100%).

- Negative energy for grid stabilization
 - Renewable power
 - Low cost electricity

Exhaust gas heat stored in a simple way; online and time-shifted use.

- Combined heat and power
- Power/efficiency boost of CCPP in generation mode
- Increased system flexibility (faster plant start-up)
Co-operation –
A Must for National and International R&D Projects

Successful innovation projects ...
... have to carefully consider
- technology
- cost
- demonstration and market introduction

... need close co-operation between
- power plant operators
- suppliers and
- research

... should be supported by
- policy decision makers
- public/private risk sharing
 (e.g. by funding)
- incentives for demonstration plants
Disclaimer

This document contains forward-looking statements and information – that is, statements related to future, not past, events. These statements may be identified either orally or in writing by words as “expects”, “anticipates”, “intends”, “plans”, “believes”, “seeks”, “estimates”, “will” or words of similar meaning. Such statements are based on our current expectations and certain assumptions, and are, therefore, subject to certain risks and uncertainties. A variety of factors, many of which are beyond Siemens’ control, affect its operations, performance, business strategy and results and could cause the actual results, performance or achievements of Siemens worldwide to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements. For us, particular uncertainties arise, among others, from changes in general economic and business conditions, changes in currency exchange rates and interest rates, introduction of competing products or technologies by other companies, lack of acceptance of new products or services by customers targeted by Siemens worldwide, changes in business strategy and various other factors. More detailed information about certain of these factors is contained in Siemens’ filings with the SEC, which are available on the Siemens website, www.siemens.com and on the SEC’s website, www.sec.gov. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in the relevant forward-looking statement as anticipated, believed, estimated, expected, intended, planned or projected. Siemens does not intend or assume any obligation to update or revise these forward-looking statements in light of developments which differ from those anticipated.

Trademarks mentioned in this document are the property of Siemens AG, its affiliates or their respective owners.