
JRC TECHNICAL REPORTS

Modelling Future EU Power Systems
Under High Shares of Renewables

The Dispa-SET 2.1
open-source model

Sylvain QUOILIN
Ignacio HIDALGO GONZALEZ
Andreas ZUCKER

2017

EUR 28427 EN

Report EUR xxxxx EN

20xx

Forename(s) Surname(s)

First subtitle line first line

Second subtitle line second

Third subtitle line third line

First Main Title Line First Line

Second Main Title Line Second Line

Third Main Title Line Third Line

This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science
and knowledge service. It aims to provide evidence-based scientific support to the European policymaking
process. The scientific output expressed does not imply a policy position of the European Commission. Neither
the European Commission nor any person acting on behalf of the Commission is responsible for the use that
might be made of this publication.

Contact Information
Name: Sylvain Quoilin
Address: European Commission, Westerduinweg 3, P.O. Box 2, 1755 ZG Petten, Netherlands
E-mail: sylvain.quoilin@ec.europa.eu
Tel.: +31 224 56 5305

JRC Science Hub
https://ec.europa.eu/jrc

JRC105452

EUR 28427 EN

PDF ISBN 978-92-79-65265-3 ISSN 1831-9424 doi:10.2760/25400

Luxembourg: Publications Office of the European Union, 2017

c© European Union, 2017

The reuse of the document is authorised, provided the source is acknowledged and the original meaning or
message of the texts are not distorted. The European Commission shall not be held liable for any consequences
stemming from the reuse.

How to cite: Quoilin S., Hidalgo Gonzalez I., Zucker A., Modelling Future EU Power Systems Under High Shares of
Renewables - The Dispa-SET 2.1 open-source model, EUR 28427 EN, doi:10.2760/25400

All images c© European Union 2017, except: [Front page, Unknown author, Copenhagen - Denmark -
Wind Farm], 2009. Source: [commons.wikimedia.org]

Modelling Future EU Power Systems Under High Shares of Renewables
Abstract
The increase in the share of renewable sources leads to new needs in terms of
flexible resources. This evolution of the power system requires proper simulation tools.
The Dispa-SET model simulates with a high level of detail the short-term operation of
large-scale power systems, solving the unit commitment and optimal dispatch problems.
The model is an open-source tool and comes with an open dataset for testing purposes.
It can therefore be freely re-used or modified to fit the needs of a particular case study.

Modelling Future EU Power Systems
Under High Shares of Renewables

Sylvain QUOILIN

Ignacio HIDALGO GONZALEZ

Andreas ZUCKER

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

1. Introduction... 4

2. Model Description ... 4

2.1. Variables .. 5

2.1.1. Sets.. 5

2.1.2. Parameters .. 5

2.1.3. Optimization Variables... 5

2.2. Optimisation model .. 5

2.2.1. Objective function... 7

2.2.2. Demand-related constraints ... 9

2.2.3. Power output bounds... 10

2.2.4. Minimum up and down times.. 11

2.2.5. Storage-related constraints .. 13

2.2.6. Emission limits ... 14

2.2.7. Network-related constraints ... 14

2.2.8. Curtailment.. 14

2.2.9. Load shedding.. 14

2.3. Rolling Horizon .. 14

2.4. Power plant clustering .. 15

2.4.1. MILP clustering... 15

2.4.2. LP clustering .. 16

3. Implementation and interface... 17

3.1. Resolution Flow Chart... 17

3.2. Dispa-SET database ... 19

3.3. Configuration File... 19

3.4. Simulation environment.. 19

3.4.1. UCM_h.gms and UCM.gpr .. 19

3.4.2.make_gdx.gms... 20

3.4.3.makeGDX.bat... 20

3.4.4. writeresults.gms... 21

3.4.5. Inputs.gdx ... 21

3.4.6. InputDispa-SET - Sets.xlsx .. 21

3.4.7. InputDispa-SET - Config.xlsx.. 21

3.4.8. InputDispa-SET - [ParameterName].xlsx.. 21

3.5. Post-processing ... 22

4. Input Data... 23

4.1. Technologies ... 23

4.2. Fuels.. 23

4.3. Unit-specific or technology-specific inputs ... 25

4.4. Countries.. 25

4.5. Power plant data.. 25

4.5.1. Common fields ... 26

4.5.2. Storage units ... 26

4.5.3. CHP units .. 26

4.6. Renewable generation .. 27

4.7. Storage and hydro data .. 27

4.7.1. Inflows.. 27

4.7.2. Storage level.. 27

4.7.3. Variable capacity storage ... 27

4.8. Power plant outages... 28

4.9. Interconnections.. 28

4.9.1. Net transfer capacities... 28

4.9.2. Historical physical flows ... 28

4.10.Fuel Prices .. 29

5. Getting Started .. 30

5.1. Prerequisites ... 30

5.1.1. Using Dispa-SET with GAMS:.. 30

5.1.2. Using Dispa-SET with PYOMO: .. 30

5.2. Run the pre-processing tool... 31

5.2.1. Check the configuration file .. 31

5.2.2. Pre-processing ... 31

5.2.3. Check the simulation environment .. 31

5.3. Run the optimisation .. 32

5.3.1. Using the GAMS user interface: .. 32

5.3.2. Using the GAMS command line: .. 32

5.3.3. From Dispa-SET, using GAMS: .. 32

5.3.4. From Dispa-SET, using PYOMO: .. 32

5.4. Postprocessing .. 32

6. Conclusions ... 35

References ... 36

Appendix 1: Dispa-SET api ... 37

7. Appendix: API Documentation.. 38

7.1. DispaTools .. 38

7.2. DispaCheck ... 41

7.3. IO - data .. 41

7.4. Input generation.. 42

7.5. Post Processing.. 42

7.6. DispaSolve.. 45

3

1. Introduction

Variability and uncertainty are familiar aspects of all power systems. However, the in-
crease in the share of renewable sources leads to new needs in terms of flexible resources
[Hidalgo González et al., 2015]. These resources can be provided by different means,
including:

� Dispatchable power plants (i.e. with ramp up and ramp down capabilities)

� Storage systems, mainly in the form of pumped hydro units

� Grid interconnections between countries

� Demand side management

� Power-to-X solutions (gas, fuel, heat, ...)

The aim of the Dispa-SET model [Hidalgo González et al., 2014, Quoilin et al., 2014] is to
represent with a high level of detail the short-term operation of large-scale power systems,
solving the unit commitment problem. To that aim, it is considered that the system is
managed by a central operator with full information on the technical and economic data of
the generation units, the demands in each node, and the transmission network.

The unit commitment problem consists of two parts: i) scheduling the start-up, operation,
and shut down of the available generation units, and ii) allocating (for each period of the
simulation horizon of the model) the total power demand among the available generation
units in such a way that the overall power system costs is minimized. The first part of
the problem, the unit scheduling during several periods of time, requires the use of binary
variables in order to represent the start-up and shut down decisions, as well as the con-
sideration of constraints linking the commitment status of the units in different periods.
The second part of the problem is the economic dispatch problem, which determines the
continuous output of each and every generation unit in the system.

The problem mentioned above can be formulated as a mixed-integer linear program (MILP).
The formulation is based upon publicly available modelling approaches [Arroyo and Conejo,
2000, Carrión and Arroyo, 2006]. The goal of the model being the simulation of a large
(e.g. European) interconnected power system, a tight and compact formulation has been
implemented, in order to simultaneously reduce the region where the solver searches for
the solution and increase the speed at which the solver carries out that search. Tightness
refers to the distance between the relaxed and integer solutions of the MILP and therefore
defines the search space to be explored by the solver, while compactness is related to the
amount of data to be processed by the solver and thus determines the speed at which the
solver searches for the optimum.

The model is released as an open-source tool to increase its transparency, its reproducibility
and its visibility [Pfenninger et al., 2017]. It is also cross-platform, and has been success-
fully tested in Windows, Linux and OSX. The model is structured in such a way that potential
users can easily modify the input data to run their own simulations with limited knowledge
in programming languages.

2. Model Description

The model is expressed as an optimisation problem written in both GAMS and PYOMO.
Continuous variables include the individual unit dispatched power, the shed load and the
curtailed power generation. The binary variables are the commitment status of each unit.
The main model features can be summarized as follows:

� Minimum and maximum power for each unit

� Power plant ramping limits

� Reserves up and down

� Minimum up/down times

� Load Shedding

4

Table 1: List of the sets defined in the optimisation model

Name Description
f Fuel types
h Hours
i Time step in the current optimization horizon
l Transmission lines between nodes
mk {DA: Day-Ahead, 2U: Reserve up, 2D: Reserve Down}
n Zones within each country (currently one zone, or node, per country)
p Pollutants
t Power generation technologies
tr Renewable power generation technologies
u Units
s Storage units (including hydro reservoirs)

� Curtailment

� Pumped-hydro storage

� Non-dispatchable units (e.g. wind turbines, run-of-river, etc.)

� Start-up, ramping and no-load costs

� Multi-nodes with capacity constraints on the lines (congestion)

� Constraints on the targets for renewables and/or CO2 emissions

� Yearly schedules for the outages (forced and planned) of each units

� Yearly schedules for the levels of large water reservoirs

The demand is assumed to be inelastic to the price signal. The MILP objective function is
therefore the total generation cost over the optimization period.

2.1 Variables

2.1.1 Sets

The sets are the basic building blocks of the optimisation model, corresponding exactly to
the indices in the algebraic representations of models. The sets defined in Dispa-SET are
listed in Table 1

2.1.2 Parameters

The parameters correspond to the exogenous data provided to the model. They result in
the constant coefficients of the optimisation model. The list of Dispa-SET parameters is
provided in Table 2.

2.1.3 Optimization Variables

The optimisation (or decision) variables are the variables that need to be adjusted to min-
imise the objective function. They are defined in Table 3.

2.2 Optimisation model

The aim of this model is to represent with a high level of detail the short-term operation
of large-scale power systems solving the so-called unit commitment problem. To that aim
we consider that the system is managed by a central operator with full information on the
technical and economic data of the generation units, the demands in each node, and the
transmission network.

5

Table 2: Dispa-SET Parameters

Name Units Description
AvailabilityFactor(u,i) % Percentage of nominal capacity available
CommittedInitial(u) n.a. Initial commitment status
CostFixed(u) EUR/h Fixed costs
CostLoadShedding(n,h) EUR/MWh Shedding costs
CostRampDown(u) EUR/MW Ramp-down costs
CostRampUp(u) EUR/MW Ramp-up costs
CostShutDown(u) EUR/h Shut-down costs
CostStartUp(u) EUR/h Start-up costs
CostVariableH(u,i) EUR/MWh Variable costs
Curtailment(n) n.a. Curtailment {binary: 1 allowed}
Demand(mk,n,i) MW Hourly demand in each zone
Efficiency(u) % Power plant efficiency
EmissionMaximum(n,p) EUR/tP Emission limit per zone for pollutant p
EmissionRate(u,p) tP/MW Emission rate of pollutant p from unit u
FlexibilityDown(u) MW/h Available fast shut-down ramping capacity
FlexibilityUp(u) MW/h Available fast start-up ramping capacity
Fuel(u,f) n.a. Fuel type used by unit u {binary: 1 u uses f}
LineNode(l,n) n.a. Line-zone incidence matrix {-1,+1}
LoadMaximum(u,h) % Maximum load for each unit
LoadShedding(n,h) MW Load that may be shed per zone in 1 hour
Location(u,n) n.a. Location {binary: 1 u located in n}
OutageFactor(u,h) % Outage factor (100 % = full outage) per hour
PartLoadMin(u) % Percentage of minimum nominal capacity
PowerCapacity(u) MW Installed capacity
PowerInitial(u) MW Power output before initial period
PowerMinStable(u) MW Minimum power for stable generation
PowerMustRun(u) MW Minimum power output
PriceTransmission(l,h) EUR/MWh Price of transmission between zones
RampDownMaximum(u) MW/h Ramp down limit
RampShutDownMaximum(u) MW/h Shut-down ramp limit
RampStartUpMaximum(u) MW/h Start-up ramp limit
RampUpMaximum(u) MW/h Ramp up limit
Reserve(t) n.a. Reserve provider {binary}
StorageCapacity(s) MWh Storage capacity (reservoirs)
StorageChargingCapacity(s) MW Maximum charging capacity
StorageChargingEfficiency(s) % Charging efficiency
StorageDischargeEfficiency(s) % Discharge efficiency
StorageInflow(s,h) MWh Storage inflows
StorageInitial(s) MWh Storage level before initial period
StorageMinimum(s) MWh Minimum storage level
StorageOutflow(s,h) MWh Storage outflows (spills)
StorageProfile(u,h) MWh Storage long-term level profile
Technology(u,t) n.a. Technology type {binary: 1: u belongs to t}
TimeDownInitial(u) h Hours down before initial period
TimeDownLeftInitial(u) h Time down remaining at initial time
TimeDownLeftJustStopped(u,i) h Time down remaining if started at time i
TimeDownMinimum(u) h Minimum down time
TimeDown(u,h) h Number of hours down
TimeUpInitial(u) h Number of hours up before initial period
TimeUpLeftInitial(u) h Time up remaining at initial time
TimeUpLeftJustStarted(u,i) h Time up remaining if started at time i
TimeUpMinimum(u) h Minimum up time
TimeUp(u,h) h Number of hours up
VOLL () EUR/MWh Value of lost load

6

Table 3: Dispa-SET Variables

Name Units Description
Committed(u,h) n.a. Unit committed at hour h {1,0}
CostStartUpH(u,h) EUR Cost of starting up
CostShutDownH(u,h) EUR cost of shutting down
CostRampUpH(u,h) EUR Ramping cost
CostRampDownH(u,h) EUR Ramping cost
CurtailedPower(n,h) MW Curtailed power at node n
Flow(l,h) MW Flow through lines
MaxRamp2U(u,h) MW/h Maximum 15-min Ramp-up capbility
MaxRamp2D(u,h) MW/h Maximum 15-min Ramp-down capbility
Power(u,h) MW Power output
PowerMaximum(u,h) MW Power output
PowerMinimum(u,h) MW Power output
ShedLoad(n,h) MW Shed load
StorageInput(s,h) MWh Charging input for storage units
StorageLevel(s,h) MWh Storage level of charge
Spillage(s,h) MWh Spillage from water reservoirs
SystemCostD EUR Total system cost for one optimization period
LostLoadMaxPower(n,h) MW Deficit in terms of maximum power
LostLoadRampUp(u,h) MW Deficit in terms of ramping up for each plant
LostLoadRampDown(u,h) MW Deficit in terms of ramping down
LostLoadMinPower(n,h) MW Power exceeding the demand
LostLoadReserve2U(n,h) MW Deficit in reserve up

The unit commitment problem considered in this report is a simplified instance of the
problem faced by the operator in charge of clearing the competitive bids of the participants
into a wholesale day-ahead power market. In the present formulation the demand side
is an aggregated input for each node, while the transmission network is modelled as a
transport problem between the nodes (that is, the problem is network-constrained but the
model does not include the calculation of the optimal power flows).

The unit commitment problem consists of two parts: i) scheduling the start-up, operation,
and shut down of the available generation units, and ii) allocating (for each period of the
simulation horizon of the model) the total power demand among the available generation
units in such a way that the overall power system costs is minimized. The first part of
the problem, the unit scheduling during several periods of time, requires the use of binary
variables in order to represent the start-up and shut down decisions, as well as the con-
sideration of constraints linking the commitment status of the units in different periods.
The second part of the problem is the so-called economic dispatch problem, which deter-
mines the continuous output of each and every generation unit in the system. Therefore,
given all the features of the problem mentioned above, it can be naturally formulated as a
mixed-integer linear program (MILP).

Since our goal is to model a large European interconnected power system, we have im-
plemented a so-called tight and compact formulation, in order to simultaneously reduce
the region where the solver searches for the solution and increase the speed at which the
solver carries out that search. Tightness refers to the distance between the relaxed and
integer solutions of the MILP and therefore defines the search space to be explored by
the solver, while compactness is related to the amount of data to be processed by the
solver and thus determines the speed at which the solver searches for the optimum. Usu-
ally tightness is increased by adding new constraints, but that also increases the size of
the problem (decreases compactness), so both goals contradict each other and a trade-off
must be found.

2.2.1 Objective function

The goal of the unit commitment problem is to minimize the total power system costs
(expressed in EUR in equation 1), which are defined as the sum of different cost items,

7

namely: start-up and shut-down, fixed, variable, ramping, transmission-related and load
shedding (voluntary and involuntary) costs.

min
∑
u,n,i[

CostStartUpu,i + CostShutDownu,i + CostF ixedu · Committedu,i

+ CostV ariableu,i · Poweru,i + CostRampUpu,i + CostRampDownu,i

+ PriceTransimissioni,l · Flowi,l + (CostLoadSheddingi,n · ShedLoadi,n)
+ V OLLPower · (LostLoadMaxPoweri,n + LostLoadMinPoweri,n)

+ V OLLReserve · (LostLoadReserve2Ui,n + LostLoadReserve2Di,n)

+ V OLLRamp · (LostLoadRampUpu,i + LostLoadRampDownu,i)
]

(1)

The costs can be broken down as:

� Fixed costs: depending on whether the unit is on or off.

� Variable costs: stemming from the power output of the units.

� Start-up costs: due to the start-up of a unit.

� Shut-down costs: due to the shut-down of a unit.

� Ramp-up: emerging from the ramping up of a unit.

� Ramp-down: emerging from the ramping down of a unit.

� Shed load: due to necessary load shedding.

� Transmission: depending of the flow transmitted through the lines.

� Loss of load: power exceeding the demand or not matching it, ramping and reserve.

The variable production costs (in EUR/MWh), are determined by fuel and emission prices
corrected by the efficiency (which is considered to be constant for all levels of output in this
version of the model) and the emission rate of the unit:

CostVariableu,h =

Markupu,h +
∑
n,f

(
Fuelu,f · FuelPricen,f,h · Locationu,n

Efficiencyu

)
+
∑
p

(EmissionRateu,p · PermitPricep) (2)

The variable cost includes an additional mark-up parameter that can be used for calibration
and validation purposes.

The start-up and shut-down costs are positive variables, active when the commitment
status between two consecutive time periods is modified:

i = 1 :

CostStartUpu,i ≥ CostStartUpu · (Committedu,i − CommittedInitialu)

CostShutDownu,i ≥ CostShutDownu · (CommittedInitialu − Committedu,i)

i > 1 :

CostStartUpu,i ≥ CostStartUpu · (Committedu,i − Committedu,i−1)

CostShutDownu,i ≥ CostShutDownu · (Committedu,i−1 − Committedu,i) (3)

In the previous equation, as in some of the following, a distinction is made between the
equation for the first and subsequent periods. The equation for the first period takes into
account the commitment status of the unit before the beginning of the simulation, which is
part of the information fed into the model.

8

Ramping costs are computed in the same manner:

i = 1 :

CostRampUpu,i ≥ CostRampUpu · (Poweru,i − PowerInitialu)

CostRampDownu,i ≥ CostRampDownu · (PowerInitialu − Poweru,i)

i > 1 :

CostRampUpu,i ≥ CostRampUpu · (Poweru,i − Poweru,i−1)

CostRampDownu,i ≥ CostRampDownu · (Poweru,i−1 − Poweru,i) (4)

It should be noted that in case of start-up and shut-down, the ramping costs are added
to the objective function. Using start-up, shut-down and ramping costs at the same time
should therefore be performed with care.

In the current formulation, all other costs (fixed and variable costs, transmission costs,
load shedding costs) are considered as exogenous parameters.

As regards load shedding, the model considers the possibility of voluntary load shedding
resulting from contractual arrangements between system operators and consumers. Ad-
ditionally, in order to facilitate tracking and debugging of errors, the model also considers
some variables representing the capacity the system is not able to provide when the min-
imum/maximum power, reserve, or ramping constraints are reached. These lost loads are
a very expensive last resort of the system used when there is no other choice available.
The different lost loads are assigned very high costs (with respect to any other costs). This
allows running the simulation without infeasibilities, thus helping to detect the origin of
the loss of load. In a normal run of the model, without errors, the LostLoad variables are
expected to be equal to zero.

2.2.2 Demand-related constraints

The main constraint to be met is the supply-demand balance, for each period and each zone,
in the day-ahead market. According to this restriction, the sum of all the power produced
by all the units present in the node (including the power generated by the storage units),
and the power injected from neighbouring nodes is equal to the load in that node, plus the
power consumed for energy storage, minus the shed load.∑

u

(Poweru,i · Locationu,n)

+
∑
l

(Flow l,i · LineNodel,n)

= DemandDA,n,h +
∑
r

(
StorageInputs,h · Locations,n

)
−ShedLoadn,i

−LostLoadMaxPowern,i + LostLoadMinPowern,i (5)

Besides that balance, the reserve requirements (upwards and downwards) in each node
must be met as well. In Dispa-SET, the reserve requirements are defined as an aggregation
of secondary and tertiary reserves, which are typically brought online in periods shorter
than an hour, the time step of this model. Therefore, additional equations and constraints
are defined to account for the up/down ramping requirements, by computing the ability of
each unit to adapt its power output within a period of 15 min.

For each power plant, the ability to increase its power (in MW/h) is the ramp-up capability
if it is already committed or the nominal power if its starting time is lower than 15 minutes.
This is to take into account that fast starting units could provide reserve (e.g. hydro units
for secondary reserve, gas turbine for tertiary reserve).

MaxRamp2Uu,i

≤ RampUpMaximumu · Committedu,i

+FlexibilityUpu · (1− Committedu,i) (6)

9

where FlexibilityUp is the maximum flexibility (in MW/h) that can be provided by the unit
in 15 min in case of cold start:

If RampStartUpMaximumu ≥ PowerMinStableu · 4
Then FlexibilityUpu = RampStartUpMaximumu

Else FlexibilityUpu = 0 (7)

where the factor 4 is used to convert the ramping rate from MW/15min to MW/h.

The maximum ramping rate is also limited by the available capacity margin between current
and maximum power output:

MaxRamp2U u,i ≤ (PowerCapacityu ·AvailabilityFactoru,i

·(1−OutageFactoru,i)− Poweru,i) · 4 (8)

The same applies to the 15 min ramping down capabilities:

MaxRamp2Du,i

≤ max (RampDownMaximumu,FlexibilityDownu) · Committedu,i (9)

The parameter FlexibilityDown is defined as the maximum ramp down rate at which the
unit can shut down in 15 minutes. In case the unit cannot be shut-down in 15 minutes
(and only in this case) the maximum ramping down capability is limited by the capacity
margin between actual and minimum power:

IfRampShutDownMaximumu < PowerMinStableu · 4 :

MaxRamp2Du,i ≤ (Poweru,i − PowerMinStableu · Committedu,i) · 4
Else :

MaxRamp2Du,i ≤ Poweru,i · 4 (10)

The reserve requirements are defined by the users. In case no input is provided a default
formula is used to evaluate the needs for secondary reserves as a function of the maximum
expected load for each day. The default formula is described by:

Demand2U,n,i =
√
10 ·max

h
(DemandDA,n,h) + 1502 − 150 (11)

Downward reserves are defined as 50% of the upward margin:

Demand2D,n,h = 0.5 ·Demand2U,n,h (12)

The reserve demand should be fulfilled at all times by all the plants allowed to participate
in the reserve market:

Demand2U,n,h

≤
∑
u,t

(
MaxRamp2Uu,i · Technologyu,t · Reservet · Locationu,n

)
+LostLoadReserve2UH n,i (13)

The same equation applies to downward reserve requirements (2D).

2.2.3 Power output bounds

The minimum power output is determined by the must-run or stable generation level of the
unit if it is committed:

PowerMustRunu,i · Committedu,i

≤ Poweru,i (14)

On the other hand, the output is limited by the available capacity, if the unit is committed:

Poweru,i

≤ PowerCapacityu ·AvailabilityFactoru,i

·(1−OutageFactoru,i) · Committedu,i (15)

10

The availability factor is used for renewable technologies to set the maximum time-dependent
generation level. It is set to one for the traditional power plants. The outage factor accounts
for the share of unavailable power due to planned or unplanned outages.

The power output in a given period also depends on the output levels in the previous and
the following periods and on the ramping capabilities of the unit. If the unit was down, the
ramping capability is given by the maximum start up ramp, while if the unit was online the
limit is defined by the maximum ramp up rate. Those bounds are given with respect to the
previous time step by the equation:

i = 1 :

Poweru,i ≤
PowerInitialu

+CommittedInitialu · RampUpMaximumu

+(1− CommittedInitialu) · RampStartUpMaximumu

+LostLoadRampUpu,i

i > 1 :

Poweru,i ≤
Poweru,i−1

+Committedu,i−1 · RampUpMaximumu

+(1− Committedu,i−1) · RampStartUpMaximumu

+LostLoadRampUpu,i (16)

Where the LoadMaximum parameter is calculated taking into account the availability factor
and the outage factor:

LoadMaximumu,h = AvailabilityFactoru,h · (1−OutageFactoru,h) (17)

Similarly, the ramp down capability is limited by the maximum ramp down or the maximum
shut down ramp rate:

i = 1 :

PowerInitialu − Poweru,i ≤
Committedu,i · RampDownMaximumu

+(1− Committedu,i) · RampShutDownMaximumu

+LostLoadRampDownu,i

i > 1 :

Poweru,i−1 − Poweru,i ≤
Committedu,i · RampDownMaximumu

+(1− Committedu,i) · RampShutDownMaximumu

+LostLoadRampDownu,i (18)

2.2.4 Minimum up and down times

The operation of the generation units is also limited as well by the amount of time the unit
has been running or stopped. In order to avoid excessive ageing of the generators, or
because of their physical characteristics, once a unit is started up, it cannot be shut down
immediately. Reciprocally, if the unit is shut down it may not be started immediately.

That is, the value of the time counter with respect to the minimum up time and down
times determines the commitment status of the unit. In order to model theses constraints
linearly, it is necessary to keep track of the number of hours the unit must be online at the
beginning of the simulation:

TimeUpLeftInitialu =

min {N, (TimeUpMinimumu − TimeUpInitialu) · CommittedInitialu} (19)

11

where N is the number of time steps in the current optimisation horizon.

If the unit is initially started up, it has to remain committed until reaching the minimum up
time:

TimeUpLeftInitialu∑
i=1

(1− Committedu,i) = 0 (20)

If the unit is started during the considered horizon, the time it has to remain online is
TimeUpMinimum, but cannot exceed the time remaining in the simulated period. This is
expressed in the next equation and is pre-calculated for each time step of the period.

TimeUpLeftJustStartedu,i =

min {N − i+ 1,TimeUpMinimumu} (21)

The equation imposing the unit to remain committed is written:

i = 1 :

i+TimeUpLeftJustStartedu,i−1∑
ii=i

Committedu,ii ≥

TimeUpLeftJustStartedu,i · (Committedu,i − CommittedInitialu)

i > 1 :

i+TimeUpLeftJustStartedu−1∑
ii=i

Committedu,ii ≥

TimeUpLeftJustStartedu,i · (Committedu,i − Committedu,i−1) (22)

The same method can be applied to the minimum down time constraint:

TimeDownLeftu =

min{N, (TimeDownMinimumu − TimeDownInitialu)

·(1− CommittedInitialu)} (23)

Related to the initial status of the unit:

TimeDownLeftu∑
i=1

Committedu,i = 0 (24)

The TimeDownLeftJustStopped parameter is computed by:

TimeDownLeftJustStoppedu,i =

min {N − i+ 1,TimeDownMinimumu} (25)

Finally, the equation imposing the time the unit has to remain de-committed is defined as:

i = 1 :

i+TimeDownLeftJustStoppedi,u−1∑
ii=i

(1− Committedu,i) ≥

TimeDownLeftJustStoppedu,i · (CommittedInitialu − Committedu,i)

i > 1 :

i+TimeDownLeftJustStoppedu−1∑
ii=i

(1− Committedu,i) ≥

TimeDownLeftJustStoppedu,i · (Committedu,i−1 − Committedu,i) (26)

This formulation avoids the use of additional binary variables to describe the start-up and
shut-down of each unit.

12

2.2.5 Storage-related constraints

Generation units with energy storage capabilities (mostly large hydro reservoirs and pumped
hydro storage units) must meet additional restrictions related to the amount of energy
stored. Storage units are considered to be subject to the same constraints as non-storage
power plants. In addition to those constraints, storage-specific restrictions are added for
the set of storage units (i.e. a subset of all units). These restrictions include the storage
capacity, inflow, outflow, charging, charging capacity, charge/discharge efficiencies, etc.
Discharging is considered as the standard operation mode and is therefore linked to the
Power variable, common to all units.

The first constrain imposes that the energy stored by a given unit is bounded by a minimum
value:

StorageMinimums ≤ StorageLevels,i (27)

In the case of a storage unit, the availability factor applies to the charging/discharging
power, but also to the storage capacity. The storage level is thus limited by:

StorageLevels,i ≤ StorageCapacitys ·AvailabilityFactors,i (28)

The energy added to the storage unit is limited by the charging capacity. Charging is allowed
only if the unit is not producing (discharging) at the same time (i.e. if the Committed
variable is equal to 0).

StorageInputs,i ≤ StorageChargingCapacitys

·AvailabilityFactors,i · (1− Committeds,i) (29)

Discharge is limited by the level of charge of the storage unit:

Power i,s

StorageDischargeEfficiencys
+ StorageOutflows,i

+Spillages,i − StorageInflows,i

≤ StorageLevels,i (30)

Charge is limited by the level of charge of the storage unit:

StorageInputs,i · StorageChargingEfficiencys

−StorageOutflows,i − Spillages,i

+StorageInflows,i

≤ StorageCapacitys − StorageLevels,i (31)

Besides, the energy stored in a given period is given by the energy stored in the previous
period, net of charges and discharges:

i = 1 :

StorageLevelInitials + StorageInflows,i

+StorageInputs,i · StorageChargingEfficiencys

= StorageLevels,i + StorageOutflows,i +
Powers,i

StorageDischargeEfficiencys

i > 1 :

StorageLevels,i−1 + StorageInflows,i

+StorageInputs,i · StorageChargingEfficiencys

= StorageLevels,i + StorageOutflows,i +
Powers,i

StorageDischargeEfficiencys
(32)

Some storage units are equipped with large reservoirs, whose capacity at full load might
be longer than the optimisation horizon. Therefore, a minimum level constraint is required
for the last hour of the optimisation, which otherwise would systematically tend to empty

13

the reservoir as much a possible. An exogenous minimum profile is thus provided and the
following constraint is applied:

StorageLevels,N ≥ min(StorageProfiles,N

·AvailabilityFactors,N · StorageCapacitys,

StorageLevels,0 +

N∑
i=1

InF lowss,i) (33)

where StorageProfile is a non-dimensional minimum storage level provided as an exogenous
input. The minimum is taken to avoid infeasibilities in case the provided inflows are not
sufficient to comply with the imposed storage level at the end of the horizon.

2.2.6 Emission limits

The operating schedule also needs to take into account any cap on the emissions (not only
CO2) from the generation units existing in each node:∑

u

(Poweru,i · EmisionRateu,p · Locationu,n)

≤ EmisionMaximumn,p (34)

It is important to note that the emission cap is applied to each optimisation horizon: if a
rolling horizon of one day is adopted for the simulation, the cap will be applied to all days
instead of the whole year.

2.2.7 Network-related constraints

The power flow between nodes is limited by the capacities of the transmission lines:

FlowMinimum l,i ≤ Flow l,i

Flow l,i ≤ FlowMaximum l,i (35)

In this model, a simple Net Transfer Capacity (NTC) between countries approach is followed.
No DC power flow or Locational Marginal Pricing (LMP) model is implemented.

2.2.8 Curtailment

If curtailment of intermittent generation sources is allowed in one node, the amount of
curtailed power is bounded by the output of the renewable (tr) units present in that node:

CurtailedPowern,i

≤
∑
u,tr

(
Poweru,i · Technologyu,tr · Locationu,n

)
· Curtailmentn (36)

2.2.9 Load shedding

If load shedding is allowed in a node, the amount of shed load is limited by the shedding
capacity contracted on that particular node (e.g. through interruptible industrial contracts)

ShedLoadn,i ≤ LoadSheddingn (37)

2.3 Rolling Horizon

The mathematical problem described in the previous sections could in principle be solved
for a whole year split into time steps of one hour, but with all likelihood the problem would
become extremely demanding in computational terms when attempting to solve the model

14

with a realistically sized dataset. Therefore, the problem is split into smaller optimization
problems that are run recursively throughout the year.

Figure 1 shows an example of such approach, in which the optimization horizon is one day,
with a look-ahead (or overlap) period of one day. The initial values of the optimization for
day j are the final values of the optimization of the previous day. The look-ahead period
is modelled to avoid issues related to the end of the optimization period such as emptying
the hydro reservoirs, or starting low-cost but non-flexible power plants. In this case, the
optimization is performed over 48 hours, but only the first 24 hours are conserved.

Figure 1: Principle of the rolling horizon optimisation with an horizon and a look-ahead period of one
day

Although the previous example corresponds to an optimization horizon and an overlap of
one day, these two values can be adjusted by the user in the Dispa-SET configuration file.
As a rule of thumb, the optimization horizon plus the overlap period should be as least twice
the maximum duration of the time-dependent constraints (e.g. the minimum up and down
times). In terms of computational efficiency, small power systems can be simulated with
longer optimization horizons, while larger systems benefit from a reduced time horizon, the
minimum being one day.

2.4 Power plant clustering

For computational efficiency reasons, it is useful to cluster some of the original units into
larger units. This reduces the number of continuous and binary variables and can, in some
conditions, be performed without significant loss of simulation accuracy.

The clustering occurs at the beginning of the pre-processing phase (i.e. the units in the
Dispa-SET database do not need to be clustered).

In Dispa-SET, different clustering options are available and can be automatically generated
from the same input data. They are described in the two next sections.

2.4.1 MILP clustering

In this formulation, the units that are either very small or very flexible are aggregated into
larger units. Some of these units (e.g. the turbojets) indeed present a low capacity or a
high flexibility: their output power does not exceed a few MW and/or they can reach full
power in less than 15 minutes (i.e. less than the simulation time step). For these units,
a unit commitment model with a time step of 1 hour is unnecessary and computationally
inefficient. They are therefore merged into one single, highly flexible unit with averaged
characteristics.

The condition for the clustering of two units is a combination of sub-conditions regarding
their type, maximum power, flexibility and technical similarities. They are summarized in
Figure 2 (NB: the thresholds are for indicative purpose only, they can be user-defined).

When several units are clustered, the minimum and maximum capacities of the new ag-
gregated unit (indicated by *) are given by:

P ∗
min = min(Pj,min) (38)

15

Figure 2: Combination of the conditions for the clustering of power plants

P ∗
max =

∑
j

(Pj,min) (39)

The last equation is also applied for the storage capacity or for the storage charging power.

The unit marginal (or variable cost) is given by:

Cost∗V ariable =

∑
j(Pj,max · CostV ariable,j)

P ∗
max

(40)

The start-up/shut-down costs are transformed into ramping costs (example with ramp-up):

Cost∗RampUp =

∑
j(Pj,max · CostRampUp,j)

P ∗
max

+

∑
j(CostStartUp,j)

P ∗
max

(41)

Other characteristics, such as the plant efficiency, the minimum up/down times or the CO2
emissions are computed as a weighted averaged:

Efficiency∗ =

∑
j(Pj,max · Efficiencyj)

P ∗
max

(42)

It should be noted that only very similar units are aggregated (i.e. their quantitative
characteristics should be similar), which avoids errors due to excessive aggregation.

2.4.2 LP clustering

Dispa-SET provides the possibility to generate the optimisation model as an LP problem
(i.e. without the binary variables). In that case, the following constraints are removed
since they can only be expressed in an MILP formulation:

� Minimum up and down times

� Start-up costs

� Minimum stable load

Since the start-up of individual units is not considered anymore, it is not useful to disag-
gregate them in the optimisation. All units of a similar technology, fuel and zone can be
aggregated into a single unit using the equations proposed in the previous section.

16

3. Implementation and interface

The typical step-by-step procedure to parametrize and run a Dispa-SET simulation is the
following:

1. Fill the Dispa-SET database with properly formatted data (time series, power plant
data, etc.)

2. Configure the simulation parameters (rolling horizon, data slicing) in the configuration
file.

3. Generate the simulation environment which comprises the inputs of the optimisation

4. Open the GAMS simulation files (project: UCM.gpr and model: UCM_h.gms) and run
the model.

5. Read and display the simulation results.

This section provides a detailed description of these steps and the corresponding data
entities.

3.1 Resolution Flow Chart

The whole resolution process for a dispa-SET run is defined from the processing and for-
matting of the raw data to the generation of aggregated results, plots, and statistics. A
flow chart of the consecutive data entities and processing steps is provided in Figure 3.

Figure 3: Flow-chart of the Dispa-SET resolution process, from the raw data to the analysis of the
results

17

Each box in the flow chart corresponds to one data entity. The links between these data
entities correspond to scripts written in Python or in GAMS. The different steps perform
various tasks, which can be summarized by:

1. Data collection:

� Read csv sheets, assemble data

� Convert to the right format (timestep, units, etc).

� Define proper time index (duplicates not allowed)

� Connect to database

� Check if data present & write data

� Write metadata

2. Pre-processing:

� Read the config file

� Slice the data to the required time range

� Deal with missing data

� Check data for consistency (min up/down times, start-up times, etc.)

� Calculate variable cost for each unit

� Cluster units

� Define scenario according to user inputs (curtailment, participation to reserve,
amount of VRE, amount of storage, etc.)

� Define initial state (basic merit-order dispatch)

� Write the simulation environment to a user-defined folder

3. Simulation environment and interoperability:

� Self-consistent folder with all required files to run the simulation:

◦ Excel files

◦ GDX file (GAMS input file)

◦ Input files in pickle format

◦ Gams model files

� Python scripts to translate the data between one format to the other.

� Possibility to modify the inputs manually and re-generate a GDX file from the
excel files

4. Simulation:

� The GAMS simulation file is run from the simulation environment folder

� Alternatively the model is run with the PYOMO solver

� All results and inputs are saved within the simulation environment

5. Post-processing:

� Read the simulation results saved in the simulation environment

� Aggregate the power generation and storage curves

� Compute yearly statistics

� Generate plots

18

3.2 Dispa-SET database

Although two versions of the database are available (mysql and csv), the public version
of Dispa-SET only comes with the latter. The Dispa-SET input data is stored as csv files
in a directory structure. A link to the required data is then provided by the user in the
configuration file.

Figure 4: Partially unfolded view of the database structure

Figure 4 shows a partially unfolded view of the database structure. In that example, data is
provided for the day-ahead net transfer capacities for all lines in the EU, for the year 2015
and with a one hour time resolution. Time series are also provided for the day-ahead load
forecast for Belgium in 2015 with one hour time resolution.

3.3 Configuration File

The excel config file is read at the beginning of the pre-processing phase. It provides
general inputs for the simulation as well as links to the relevant data files in the database
(Figure 5).

3.4 Simulation environment

This section describes the different simulation files, templates and scripts required to run
the Dispa-SET optimisation model. For each simulation, these files are included into a
single directory corresponding to a self-sufficient simulation environment. This simulation
environment directory is generated by the pre-processing scripts (Figure 3).

3.4.1 UCM_h.gms and UCM.gpr

UCM_h.gms is the main GAMS model described in Chapter 1. A copy of this file is included
in each simulation environment, allowing keeping track of the exact version of the model
used for the simulation. The model must be run in GAMS and requires a proper input file
(Inputs.gdx).

Requires: Inputs.gdx Input file for the simulation.
Generates: Results.gdx Simulation results in gdx format

Results.xlsx Simulation results in xlsx format.

UCM.gpr is the GAMS project file which should be opened before UCM_h.gms.

19

Figure 5: View of the Dispa-SET configuration file

3.4.2 make_gdx.gms

GAMS file that reads the different template excel files and generates the Inputs.gdx file.
This file should be opened in GAMS.

Requires: InputDispa-SET - xxx.xlsx Dispa-SET template files
Generates: Inputs.gdx Input file for the simulation

3.4.3 makeGDX.bat

Batch script that generates the input file from the template without requiring opening GAMS.
The first time it is executed, the path of the GAMS folder must be provided.

Requires: InputDispa-SET - xxx.xlsx Dispa-SET template files
make_gdx.gms GAMS file to generate Inputs.gdx

Generates: Inputs.gdx Input file for the simulation

20

3.4.4 writeresults.gms

GAMS file to generate the excel Results.xlsx file from the Results.gdx generated by GAMS
(in case the write_excel function was deactivated in GAMS.

Requires: Results.gdx Simulation results in gdx format
Generates: Results.xlsx Simulation results in xlsx format

3.4.5 Inputs.gdx

All the inputs of the model must be stored in the Inputs.gdx file since it is the only file read
by the main GAMS model. This file is generated from the Dispa-SET template.

Requires: InputDispa-SET - xxx.xlsx Dispa-SET template files
Generates:

3.4.6 InputDispa-SET - Sets.xlsx

Single excel file that contains all the sets used in the model in a column format.

3.4.7 InputDispa-SET - Config.xlsx

Single excel file that contains simulation metadata in the form of a Table. This metadata
allows setting the rolling horizon parameter and slicing the input data to simulate a subset
only.

Table 4: Description of the "Config" parameter

FirstDay 2012 10 1 First day of the simulation in the template
data

LastDay 2013 9 30 Last day of the simulation in the template
data

RollingHorizon Length 0 0 3 Length of the rolling horizons
RollingHorizon
LookAhead

0 0 1 Overlap period of the rolling horizon

3.4.8 InputDispa-SET - [ParameterName].xlsx

Series of 42 excel files, each corresponding to a parameter of the Dispa-SET model (see
Table 2). The files are formatted according to a pre-defined template described hereunder.

The name of the input files are “Input Dispa-SET - [Parameter name].xlsx”. These files
contain the data to be read by the model, after conversion into a GDX file.

The structure of all input files follows the following rules:

1. There is one file per model parameter

2. Each file contains only one sheet

3. The first row is left blank for non-time series data (i.e. data starts at A2)

4. For time series data, the rows are organized as follows:

(a) The first row is left blank

(b) Rows 2 to 5 contains the year, month, day and hour of each data

(c) Row 6 contains the time index of the data, which will be used in Dispa-SET

(d) The data therefore starts at A6

5. If one of the input sets of the data is u (the unit name), it is always defined as the
first column of the data (column A)

21

6. If one of the input sets of the data is h (the time index), it is always defined as the
only horizontal input in row 6

In the particular case of the file “Input Dispa-SET - Sets.xlsx” (cfr. section 3.4.6), all the
required sets are written in columns with the set name in row 2.

3.5 Post-processing

Post-processing is implemented in the form of a series of functions to read the simulation
inputs and results, to plot them, and to derive statistics.

The following values are computed:

� The total energy generated by each fuel, in each country.

� The total energy curtailed

� the total load shedding

� The overall country balance of the interconnection flows

� The total hours of congestion in each interconnection line

� The total amount of lost load, indicating (if not null) that the unit commitment problem
was infeasible for some hours

� The number of start-ups of power plants for each fuel

The following plots can be generated:

� A dispatch plot (by fuel type) for each country

� A commitment status (ON/OFF) plot for all the unit in a given country

� The level (or state of charge) of all the storage units in a given country

� The overall power generation by fuel type for all countries (bar plot)

An example usage of these functions is provided in the “Read_Results.ipynb” notebook.

22

4. Input Data

In this section, “Input Data” refers to the data stored in the Dispa-SET database. The
format of this data is pre-defined and imposed, in such a way that it can be read by the
pre-processing tool.

Two important preliminary comments should be formulated:

� All the time series should be registered with their timestamps (e.g. ‘2013-02-20
02:00:00’) relative to the UTC time zone.

� Although the optimisation model is designed to run with any technology or fuel name,
the pre-processing and the post-processing tools of Dispa-SET use some hard-coded
values. The Dispa-SET database should also comply with this convention (described
in the next sections). Any non-recognized technology or fuel will be discarded in the
pre-processing.

4.1 Technologies

The Dispa-SET input distinguishes between the technologies defined in Table 5. The VRES
column indicates the variable renewable technologies (set “tr” in the optimisation) and the
Storage column indicates the technologies which can accumulate energy.

Table 5: Dispa-SET technologies

Technology Description VRES Storage
COMC Combined cycle N N
GTUR Gas turbine N N
HDAM Conventional hydro dam N Y
HROR Hydro run-of-river Y N
HPHS Pumped hydro storage N Y
ICEN Internal combustion engine N N
PHOT Solar photovoltaic Y N
STUR Steam turbine N N
WTOF Offshore wind turbine Y N
WTON Onshore wind turbine Y N
CAES Compressed air energy storage N Y
BATS Stationary batteries N Y
BEVS Battery-powered electric vehicles N Y
THMS Thermal storage N Y
P2GS Power-to-gas storage N Y

4.2 Fuels

Dispa-SET only considers a limited number of fuel types. They are summarised in Table 6,
together with some examples.

23

Table 6: Dispa-SET fuels

Fuel Examples
BIO Bagasse, Biodiesel, Gas From Biomass, Gasification, Biomass, Briquettes, Cattle

Residues, Rice Hulls Or Padi Husk, Straw, Wood Gas (From Wood Gasification),
Wood Waste Liquids Excl Blk Liq (Incl Red Liquor, Sludge, Wood,Spent Sulfite
Liquor And Oth Liquids, Wood And Wood Waste

GAS Blast Furnace Gas, Boiler Natural Gas, Butane, Coal Bed Methane, Coke Oven Gas,
Flare Gas, Gas (Generic), Methane, Mine Gas, Natural Gas, Propane, Refinery Gas,
Sour Gas, Synthetic Natural Gas, Top Gas, Voc Gas & Vapor, Waste Gas, Wellhead
Gas

GEO Geothermal steam
HRD Anthracite, Other Anthracite, Bituminous Coal, Coker By-Product, Coal Gas (From

Coal Gasification), Coke, Coal (Generic), Coal-Oil Mixture, Other Coal, Coal And
Pet Coke Mi, Coal Tar Oil, Anthracite Coal Waste, Coal-Water Mixture, Gob, Hard
Coal / Anthracite, Imported Coal, Other Solids, Soft Coal, Anthracite Silt, Steam
Coal, Subbituminous, Pelletized Synthetic Fuel From Coal, Bituminous Coal Waste)

HYD Hydrogen
LIG Lignite black, Lignite brown, lignite
NUC U, Pu
OIL Crude Oil, Distillate Oil, Diesel Fuel, No. 1 Fuel Oil, No. 2 Fuel Oil, No. 3 Fuel Oil,

No. 4 Fuel Oil, No. 5 Fuel Oil, No. 6 Fuel Oil, Furnace Fuel, Gas Oil, Gasoline,
Heavy Oil Mixture, Jet Fuel, Kerosene, Light Fuel Oil, Liquefied Propane Gas,
Methanol, Naphtha, ,Gas From Fuel Oil Gasification, Fuel Oil, Other Liquid,
Orimulsion, Petroleum Coke, Petroleum Coke Synthetic Gas, Black Liquor, Residual
Oils, Re-Refined Motor Oil, Oil Shale, Tar, Topped Crude Oil, Waste Oil

PEA Peat Moss
SUN Solar energy
WAT Hydro energy
WIN Wind energy
WST Digester Gas (Sewage Sludge Gas), Gas From Refuse Gasification, Hazardous

Waste, Industrial Waste, Landfill Gas, Poultry Litter, Manure, Medical Waste,
Refused Derived Fuel, Refuse, Waste Paper And Waste Plastic, Refinery Waste,
Tires, Agricultural Waste, Waste Coal, Waste Water Sludge, Waste

Different fuels may be used to power a given technology, e.g. steam turbines may be fired
with almost any fuel type. In Dispa-SET, each unit must be defined with the pair of values
(technology,fuel). Table 7 is derived from a commercial power plant database and indicates
the number of occurrences of each combination. It appears clearly that, even through some
combinations are irrelevant, both characteristics are needed to define a power plant type.

Table 7: Number of unit for each combination of fuel and technology

f/t COMC GTUR HDAM HPHS HROR ICEN PHOT STUR WTOF WTON Tot
BIO 2 10 79 91
GAS 485 188 28 97 798
GEO 10 10
HRD 4 389 393
HYD 1 1 2
LIG 249 249
NUC 138 138
OIL 7 94 27 146 274
PEA 17 17
SUN 20 7 27
UNK 2 1 1 4
WAT 33 23 21 1 78
WIN 9 27 36
WST 3 7 46 56
Tot 496 290 33 23 21 73 20 1181 9 27 2173

24

4.3 Unit-specific or technology-specific inputs

Some parameters, such as the availability factor, the outage factor or the inflows may be
defined at the unit level or at the technology level. For that reason, the pre-processing tool
first lookups the unit name in the database to assign the unit a value, and then lookups the
technology if no unit-specific information has been found.

4.4 Countries

Although the nodes names can be freely user-defined in the database, for the Dispa-SET EU
model, the ISO 3166-1 standard has been adopted to describe each country at the NUTS-1
level. The list of countries is defined in Table 8.

Table 8: NUTS-1 zones de-
fined in Dispa-SET

Code Country
AT Austria
BE Belgium
BG Bulgaria
CH Switzerland
CY Cyprus
CZ Czech Republic
DE Germany
DK Denmark
EE Estonia
EL Greece
ES Spain
FI Finland
FR France
GB Great Britain
HR Croatia
HU Hungary
IE Ireland
IT Italy
LT Lituania
LU Luxembourg
LV Latvia
MT Malta
NL Netherlands
NO Norway
PL Poland
PT Portugal
RO Romania
SE Sweden
SI Slovenia
SK Slovakia

It should be noted that ‘UK’ (United Kingdom) has been replaced by ‘GB’ (Great Britain) in
this list, i.e. northern Ireland is not considered and is instead included within the ‘IE’ node.

4.5 Power plant data

The power plant database may contain as many fields as desired, e.g. to ensure that
the input data can be traced back, or to provide the id of this plant in another database.
However, some fields are required by Dispa-SET and must therefore be defined in the
database.

25

4.5.1 Common fields

The common fields that are required for all units are listed in Table 9:

Table 9: Common fields for all units

Description Field name Units
Unit name Unit
Commissioning year Year
Technology Technology
Primary fuel Fuel
Zone Zone
Capacity PowerCapacity MW
Efficiency Efficiency %
Efficiency at minimum load MinEfficiency %
CO2 intensity CO2Intensity TCO2/MWh
Minimum load PartLoadMin %
Ramp up rate RampUpRate %/min
Ramp down rate RampDownRate %/min)
Start-up time StartUPTime h
Minimum up time MinUpTime h
Minimum down time MinDownTime h
No load cost NoLoadCost EUR/h
Start-up cost StartUpCost EUR
Ramping cost RampingCost EUR/MW
Presence of CHP CHP y/n

NB: the fields indicated with % as unit must be entered in a non-dimensional way (i.e. 90%
should be written 0.9).

4.5.2 Storage units

Some parameters (listed in Table 10) must only be defined for the units equipped with
storage. They can be left blank for all other units.

Table 10: Specific fields for storage units

Description Field name Units
Storage capacity STOCapacity MWh
Self-discharge rate STOSelfDischarge %/h
Maximum charging power STOMaxChargingPower MW
Charging efficiency STOChargingEfficiency %

In the case of a storage unit, the discharge efficiency should be assigned to the common
field “Efficiency”. Similarly, the common field “PowerCapacity” is the nominal power in
discharge mode.

4.5.3 CHP units

Some parameters (listed in Table 11) must only be defined for the units equipped with CHP.
They can be left blank for all other units.

Table 11: Specific fields for CHP units

Description Field name Units
CHP Type CHPType extraction/back-pressure/other
Power-to-heat ratio CHPPowerToHeat

NB: CHP units are not (yet) supported in version 2.1.0 of Dispa-SET

26

4.6 Renewable generation

Variable renewable generation is defined as power generation from renewable sources that
cannot be stored: its is either fed to the grid or curtailed. The technologies falling under
this definition are the ones described in the subset “tr” in the model definition.

The time-dependent generation for these technologies must be provided as an exogenous
time series in the form of an “availability factor”. The latter is defined as the proportion of
the nominal power capacity that can be generated at each hour.

In the database, the time series are provided as column vectors with the technology name
as header. After the pre-processing, an availability factor is attributed to each unit according
to their technology. Non-renewable technologies are assigned an availability factor of 1.

4.7 Storage and hydro data

Storage units are an extension of the regular units, including additional constraints and
parameters. In the power plant table, four additional parameters are required: storage ca-
pacity (in MWh), self-discharge (in %/h), discharge power (in MW) and discharge efficiency
(in %).

Some other parameters must be introduced in the form of time series in the “HydroData”
section of the Dispa-SET database. There are described hereunder.

It should be noted that the nomenclature adopted for the modelling of storage units refers
to the characteristics of hydro units with water reservoirs. However, these parameters
(e.g. inflows, level) can easily be transposed to the case of alternative storage units such
as batteries or compressed air energy storage (CAES).

4.7.1 Inflows

The Inflows are defined as the contribution of exogenous sources to the level (or state of
charge) or the reservoir. They are expressed in MWh of potential energy. If the inflows are
provided as m3/h, they must be converted.

The input to Dispa-Set is defined as “ScaledInflows”. It is the normalized values of the
inflow with respect to the nominal power of the storage unit (in discharge mode). As an
example, if the inflow value at a certain time is 100 MWh/h and if the turbining capacity of
the hydro plant is 200 MW, the scaled inflow value must be defined as 0.5.

Scaled inflows should be provided in the form of time series with the unit name or the
technology as columns header.

4.7.2 Storage level

Because emptying the storage has a zero marginal cost, a non-constrained optimization
tends to leave the storage completely empty at the end of the optimisation horizon. For
that reason, a minimum storage level is imposed at the last hour of each horizon. In Dispa-
SET, a typical optimisation horizon is a few days. The model is therefore not capable of
optimising the storage level e.g. for seasonal variations. The minimum storage level at
the last hour is therefore an exogenous input. It can be selected from a historical level or
obtained from a long-term hydro scheduling optimization.

The level input in the Dispa-SET database is normalized with respect to the storage capac-
ity: its minimum value is zero and its maximum is one.

4.7.3 Variable capacity storage

In special cases, it might be necessary to simulate a storage unit whose capacity varies
in time. A typical example is the simulation of the storage capacity provided by electric
vehicles: depending on the time of the day, the connected battery capacity varies.

27

This special case can be simulated using the “AvailabilityFactor” input. In the case of a
storage unit, it reduces the available capacity by a factor varying from 0 to 1.

4.8 Power plant outages

In the current version, Dispa-SET does not distinguish planned outages from unplanned
outages. They are characterized for each unit by the “OutageFactor” parameter. This
parameter varies from 0 (no outage) to 1 (full outage). The available unit power is thus
given by its nominal capacity multiplied by (1-OutageFactor).

The outages are provided in the dedicated section of the Database for each unit. They
consist of a time series with the unit name as columns header.

4.9 Interconnections

Two case should be distinguished when considering interconnections:

� Interconnections occurring between the simulated zones

� Interconnections occurring between the simulated zones and the Rest of the World
(RoW)

These two cases are addresses by two different datasets described hereunder.

4.9.1 Net transfer capacities

Dispa-SET endogenously models the internal exchanges between countries (or zones) using
a commercial net transfer capacity (NTC). It does not consider (yet) DC power flows or more
complex grid simulations.

Since the NTC values might vary in time, they must be supplied as time series, whose
header include the origin country, the string ‘ -> ‘ and the destination country. As an
example, the NTC from Belgium to France must be provided with the header ‘BE -> FR’.

Because NTCs are not necessarily symmetrical, they must be provided in both directions
(i.e. ‘BE -> FR’ and ‘FR -> BE’). Non-provided NTCs are considered to be zero (i.e. no
interconnection).

4.9.2 Historical physical flows

In Dispa-SET, the flows between internal zones and the rest of the world cannot be modelled
endogenously. They must be provided as exogenous inputs. These inputs are referred to
as “Historical physical flows”, although they can also be user-defined.

In the input table of historical flows, the headers are similar to those of the NTCs (ie. ‘XX
-> YY’). All flows occurring between an internal zone of the simulation and an outside zone
are considered as external flows and summed up. As an example, the historical flows ‘FR
-> XX’, ‘FR -> YY’ and ‘FR -> ZZ’ will be aggregated in to a single interconnection flow ‘FR
-> RoW’ if XX, YY and ZZ are not simulated zones.

These aggregated historical flows are then imposed to the solver as exogenous inputs.

In Dispa-SET, the flows are defined as positive variables. For each zone, there will thus be
a maximum of two vectors defining its exchanges with the rest of the world (e.g. ‘FR ->
RoW’ and ‘RoW -> FR’).

As for the NTCs, undefined historical flows are considered to be zero, i.e. not providing any
historical flows is equivalent to consider the system as isolated.

28

4.10 Fuel Prices

Fuel prices vary both geographically and in time. They must therefore be provided as a
time series for each simulated zone. One table is provided per fuel type, with as column
header the zone to which it applies. If no header is provided, the fuel price is applied to all
the simulated zones.

29

5. Getting Started

This short tutorial describes the main steps to get a practical example of Dispa-SET running.
It covers both the installation of the required software and libraries, and the use of the
Dispa-SET tools and internal functions. This section is provided as an example, the detailed
description of all Dispa-SET functions is provided in the Appendix.

5.1 Prerequisites

Install Python 2.7, with full scientific stack. The Anaconda distribution is recommended
since it comprises all the required packages. If Anaconda is not used, the following libraries
and their dependencies should be installed manually:

� numpy

� pandas

� matplotlib

� pickle

This can be achieved using the pip installer (example for the Numpy package):

pip install numpy

NB: For Windows users, some packages might require the installation of a C++ compiler for
Python. This corresponds to the typical error message: “Unable to find vcvarsall.bat”. This
can be solved by installing the freely available “Microsoft Visual C++ Compiler for Python 2.7
”. In some cases the path to the compiler must be added to the PATH windows environment
variable (e.g. C:Program Files\Common Files\MicrosoftVisual C++ for Python\9.0)

5.1.1 Using Dispa-SET with GAMS:

Dispa-SET is primarily designed to run with GAMS and therefore requires GAMS to be
installed with a valid user licence.

The GAMS API for python has been pre-compiled in the “Externals” folder and is usable
with most operating systems (both 32 and 64 bits). If the pre-compiled binaries are not
available or could not be loaded, the system exits with an error message. In that case, the
GAMS python API should be compiled from the source provided in the GAMS installation
folder (e.g. “C:\GAMS\win32\24.3\apifiles\Python\api”):

python gdxsetup.py install
python gamssetup.py install

The API requires the path to the gams installation folder. The “get_gams_path()” function
of dispa-set performs a system search to automatically detect this path. It case it is not
successful, the user is prompted for the proper installation path.

5.1.2 Using Dispa-SET with PYOMO:

Dispa-SET can also be run using PYOMO, which avoids the necessity of a GAMS license.
The following steps should be followed:

� Install pyomo

pip install pyomo

� Install a solver and add it to the PATH environment variable (e.g. if cplex is installed,
the “cplex” command should be callable from any command prompt).

30

https://www.continuum.io/downloads

5.2 Run the pre-processing tool

5.2.1 Check the configuration file

Dispa-SET runs are defined in dedicated excel configuration files stored in the “Config-
Files” folder. The configuration file “ConfigTest.xlsx” has be setup for testing purposes. It
generates a 10-days optimisation using data relative to the Dutch power system.

5.2.2 Pre-processing

To run the pre-processing tool with this configuration file, several options are available:

� From the command line, specify the configuration file to be used as an argument.
Within the “Dispa-SET” folder run:

python Dispa-SET.py -b ConfigFiles/ConfigTest.xlsx

� From a python IDE (e.g. Spyder), specifying the configuration file. Configure the
“Dispa-SET.py” file to be run with the command line option “-b ConfigFiles/ConfigTest.xlsx”.
Figure 6 shows the “Run Settings” dialog properly configured for Spyder.

Figure 6: Example of Run Settings for the Spyder IDE

� Without specification of the configuration file. In that case the pre-processing tool
prompts the user for the path to the configuration file, which should be provided as
follows:

ConfigFiles/ConfigTest.xlsx

5.2.3 Check the simulation environment

The simulation environment folder is defined in the configuration file. In the test example, it
is set to “Simulations/simulation_test”. The simulation inputs are written in three different
formats: excel (34 excel files), Python (Inputs.p) and GAMS (Inputs.gdx).

31

5.3 Run the optimisation

The optimisation can be run directly from the simulation environment folder generated by
the pre-processing tool. Different options are available for that purpose:

5.3.1 Using the GAMS user interface:

From the simulation folder (defined in the config file), the Dispa-SET model can be run
following the instruction below:

1. Open the UCM.gpr project file and then the UCM.h.gmx model file.

2. Run the model in GAMS.

The result file is written in the gdx format and stored in the Simulation folder, together with
all input files.

5.3.2 Using the GAMS command line:

GAMS can also be run from the command line (this is the only option for the Linux version).

1. Make sure that the gams binary is in the system PATH

2. From the simulation environment folder, run:

gams UCM_h.gms

5.3.3 From Dispa-SET, using GAMS:

Using the GAMS api, the simulation can be started directly from the main Dispa-SET python
file after the pre-processing phase. From the “Dispa-SET” folder, run:

python Dispa-SET.py -br ConfigFiles/ConfigTest.xlsx

This generates the simulation environment, runs the optimisation, and stores the results in
the same folder.

5.3.4 From Dispa-SET, using PYOMO:

The PYOMO interface of Dispa-SET can be called using the dedicated API:

� Import the Dispa-SET PYOMO solver

from DispaSET.DispaSolve import DispaSolve

� Load the inputs from a pre-processed simulation environment folder (NB: the pickle
output must be activated in the pre-processing configuration file)

import pickle
SimData = pickle.load(open('Simulations/simulation_test/Inputs.p','rb'))

� Run the optimisation and store the results in the ”result” variable.

results = DispaSolve(SimData['sets'], SimData['parameters'])

5.4 Postprocessing

Various functions and tools are provided within the PostProcessing.py file to load, analyse
and plot the simulation results. The use of these functions is illustrated in the “Read_results_notebook.ipynb”
Notebook, which can be run by changing the path variable to the simulation folder. The
type of results provided by the post-processing is illustrated hereunder.

32

In case the simulation was performed in GAMS, the results should be loaded from the
Results.gdx file and properly formatted. This can be achieved using the dedicated functions:

import DispaSET as ds
inputs,results = ds.GetResults(path='Simulations/simulation_test/')
datain = ds.ds_to_df(inputs)

The power dispatch can then be plotted for each simulated zone. In this plot, the units are
aggregated by fuel type. The power consumed by storage units and the exportations are
indicated as negative values (cfr Figure 7). It is also interesting to display the results at the
unit level to gain deeper insights regarding the dispatch. In that case, a plot is generated,
showing the commitment status of all units in a zone at each timestep (Figure 8). Both the
dispatch plot and the commitment plot can be called using the CountryPlots function.

ds.CountryPlots(inputs,results,'DE')

Figure 7: Example result: Power Dispatch for Germany, disaggregated by fuel type

Figure 8: Example result: Commitment and power level status of each unit in Belgium

Some aggregated statistics on the simulations results can also be obtained, including the

33

number of hours of congestion in each interconnection line, the yearly energy balances for
each zone, the amount of lost load, etc (Figure 9):

r = ds.ResultAnalysis(inputs,results)

Figure 9: Example output of the ResultAnalysis function

The yearly energy balance per fuel or per technology is also useful to compare the energy
mix in each zone. This can be plotted using the EnergyBarPlot function, the output being
shown in Figure 10.

PPindicators = ds.PerPowerPlantIndicators(inputs,results)
ax = ds.EnergyBarPlot(datain,results,PPindicators)

Figure 10: Example result: Energy balance per simulated country

34

6. Conclusions

This document has described the formulation and implementation of Dispa-SET 2.1, a model
developed by the DG Joint Research Centre of the European Commission. The model an
open-source unit commitment and optimal dispatch simulation tool for power systems. It
aims at representing with a high level of detail the short-term operation of large-scale
power systems. It is particularly well designed to evaluate higher penetration rates of
variable energy sources (e.g. wind or solar) in future EU power systems by computing
effects such as flexibility requirement, lines congestion, cycling of power plants, usage of
storage capacity, etc. These indicators are required to properly address different research
topics relevant for supporting European energy policy making.

The tool is data-intensive: it requires high resolution time series for the demand profiles,
the renewable generation, the power plant outages and the fuel prices. It also requires
a database of power plants including their technical characteristics. Starting from this
detailed input dataset, optimisation problems of variable complexity can be generated. The
most detailed formulation is MILP, in which each unit commitment status is represented by
a binary variable. The low-detail formulation is LP, in which power plants are aggregated in
clusters of similar technologies and fuels. This adjustable model complexity is an interesting
feature since it allows performing lower-accuracy simulations when computational efficiency
is an issue (e.g. in Monte-Carlo simulations).

The model is released as an open-source tool1 and is provided with an open dataset for
testing purposes. It can therefore be freely re-used or modified to fit the needs of a
particular case study.

The development of Dispa-SET is an ongoing process. New features will be added in the
future, including for example:

� A better representation of reserve needs, distinguishing between different types of
reserves (secondary and tertiary).

� The addition of a capacity planning module.

� The linkage with long-term energy planning models such as the JRC-EU-TIMES [Simoes
et al., 2013], by soft-linking [Deane et al., 2012], or by direct integration of flexibility
constraints [Quoilin et al., 2015].

� The addition of new constraints (e.g. hydropower and water requirements for cooling).

� The addition of stochastic features.

1The source code of the public version of Dispa-SET is available at: https://github.com/squoilin/Dispa-SET

35

https://github.com/squoilin/Dispa-SET

References

[Arroyo and Conejo, 2000] Arroyo, J. M. and Conejo, A. J., ‘Optimal response of a thermal
unit to an electricity spot market’, IEEE Transactions on power systems, Vol. 15, No 3,
2000, pp. 1098–1104.

[Carrión and Arroyo, 2006] Carrión, M. and Arroyo, J. M., ‘A computationally efficient
mixed-integer linear formulation for the thermal unit commitment problem’, IEEE
Transactions on power systems, Vol. 21, No 3, 2006, pp. 1371–1378. URL http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1664974.

[Deane et al., 2012] Deane, J. P., Chiodi, A., Gargiulo, M. and Ó Gallachóir, B. P., ‘Soft-
linking of a power systems model to an energy systems model’, Energy, Vol. 42, No 1,
Jun. 2012, pp. 303–312. ISSN 0360-5442. . URL http://www.sciencedirect.com/
science/article/pii/S0360544212002551.

[Hidalgo González et al., 2014] Hidalgo González, I., Quoilin, S. and Zucker, A., ‘Dispa-SET
2.0: unit commitment and power dispatch model’, Tech. rep., Publications Office of
the European Union, 2014.

[Hidalgo González et al., 2015] Hidalgo González, I., Ruez Castello, P., Scobbi, A., NIJS, W.,
Quoilin, S., Zucker, A. and Thiel, C., ‘Addressing flexibility in energy system models’,
Tech. rep., Publications Office of the European Union, 2015.

[Morales-España et al., 2013] Morales-España, G., Latorre, J. M. and Ramos, A., ‘Tight
and compact MILP formulation for the thermal unit commitment problem’, IEEE
Transactions on Power Systems, Vol. 28, No 4, 2013, pp. 4897–4908. URL http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6485014.

[Pfenninger et al., 2017] Pfenninger, S., DeCarolis, J., Hirth, L., Quoilin, S. and Staffell,
I., ‘The importance of open data and software: Is energy research lagging behind?’,
Energy Policy, Vol. 101, Feb. 2017, pp. 211–215. ISSN 0301-4215. . URL http:
//www.sciencedirect.com/science/article/pii/S0301421516306516.

[Poncelet et al., 2016] Poncelet, K., Delarue, E., Six, D., Duerinck, J. and D’haeseleer, W.,
‘Impact of the level of temporal and operational detail in energy-system planning
models’, Applied Energy, Vol. 162, Jan. 2016, pp. 631–643. ISSN 0306-2619. . URL
http://www.sciencedirect.com/science/article/pii/S0306261915013276.

[Quoilin et al., 2014] Quoilin, S., Gonzalez Vazquez, I., Zucker, A. and Thiel, C., ‘Available
technical flexibility for balancing variable renewable energy sources: case study in Bel-
gium’, In ‘Proceedings of the 9th Conference on Sustainable Development of Energy,
Water and Environment Systems’, URL http://orbi.ulg.be/handle/2268/172402.

[Quoilin et al., 2015] Quoilin, S., Nijs, W., Gonzalez, I. H., Zucker, A. and Thiel, C., ‘Evalua-
tion of simplified flexibility evaluation tools using a unit commitment model’, In ‘2015
12th International Conference on the European Energy Market (EEM)’, pp. 1–5.

[Simoes et al., 2013] Simoes, S., Nijs, W., Ruiz, P., Sgobbi, A. R., D Bolat, P., Thiel, C. and
Peteves, S., ‘The JRC-EU-TIMES model–Assessing the long-term role of the SET Plan
Energy technologies’, Tech. rep., Publications Office of the European Union, 2013.

36

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1664974
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1664974
http://www.sciencedirect.com/science/article/pii/S0360544212002551
http://www.sciencedirect.com/science/article/pii/S0360544212002551
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6485014
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6485014
http://www.sciencedirect.com/science/article/pii/S0301421516306516
http://www.sciencedirect.com/science/article/pii/S0301421516306516
http://www.sciencedirect.com/science/article/pii/S0306261915013276
http://orbi.ulg.be/handle/2268/172402

THIS PAGE INTENTIONALLY LEFT BLANK

7. Appendix: API Documentation

7.1 DispaTools

This files gathers different functions used in the Dispa-SET pre-processing and post-processing
tools

@author: Sylvain Quoilin (sylvain.quoilin@ec.europa.eu)

DispaTools.InputDir(msg=None)
Function that requires the user to input a directory

DispaTools.InputFile(msg=None)
Function that requires the user to input a file path

DispaTools.MergeSeries(plants, data, mapping, method=’WeightedAverage’)
Function that merges the times series corresponding to the merged units (e.g. out-
ages, inflows, etc.)

Parameters

� plants – Pandas dataframe with the information relative to the original
units

� data – Pandas dataframe with the time series and the original unit
names as column header

� mapping – Mapping between the merged units and the original units.
Output of the clustering function

� method – Select the merging method (‘WeightedAverage’/’Sum’)

Return merged Pandas dataframe with the merged time series when nec-
essary

DispaTools.ParamDefinition(sets_in, sets, value=0)
Function to define a Dispa-SET parameter and fill it with a constant value

Parameters

� sets_in – List with the labels of the sets corresponding to the param-
eter

� sets – dictionary containing the definition of all the sets (must com-
prise those referenced in sets_in)

� value – Default value to attribute to the parameter

DispaTools.append_to_dict(k, source, destination)
Function to add a record to a dictionary (e.g. a new power plant) from another dictio-
nary

DispaTools.clean_strings(x, exclude_digits=False, exclude_punctuation=False)
Function to convert strange unicode and remove characters punctuation

Parameters x – any string or list of strings

Usage:

df[’DisplayName’].apply(clean_strings)

DispaTools.clustering(plants, method=’Standard’, Nslices=20, PartLoadMax=0.1,
Pmax=30)

Merge excessively disaggregated power Units.

Parameters

� plants – Pandas dataframe with each power plant and their charac-
teristics (following the Dispa-SET format)

� method – Select clustering method (‘Standard’/’LP’/None)

38

mailto:sylvain.quoilin@ec.europa.eu

� Nslices – Number of slices used to fingerprint each power plant char-
acteristics to categorize them (fewer slices involves that the plants will
be aggregated more easily)

� PartLoadMax – Maximum part-load capability for the unit to be clus-
tered

� Pmax – Maximum power for the unit to be clustered

Returns A list with the merged plants and the mapping between the original
and merged units

DispaTools.ds_to_df(inputs)
Function that converts the Dispa-SET data format into a dictionary of dataframes

Parameters

� list_vars – List containing the Dispa-SET variables

� format – Format version of the Dispa-SET variables

� timeindex – Time index to be applied to the dataframes. The size of
the output is adapted accordingly.

Returns dictionary of dataframes

DispaTools.find_nearest(array, value)
Function to find the index of the nearest value in a vector

DispaTools.get_gams_path()
Function that attemps to search for the GAMS installation path (required to write the
GDX or run gams)

It returns the path if it has been found, or an empty string otherwise.

Currently works for Windows and Linux. More searching rules and patterns should be
added in the future

DispaTools.get_set_members(instance, sets)
Get set members relative to a list of sets

Parameters

� instance – Pyomo Instance

� sets – List of strings with the set names

Returns A list with the set members

DispaTools.get_sets(instance, varname)
Get sets that belong to a pyomo variable or parameter

Parameters

� instance – Pyomo Instance

� varname – Name of the Pyomo Variable (string)

Returns A list with the sets that belong to this Parameter

DispaTools.incidence_matrix(sets, set_used, parameters, param_used)
This function generates the incidence matrix of the lines within the nodes A particular
case is considered for the node “Rest Of the World”, which is a special case in Dispa-
SET

DispaTools.interconnections(Simulation_list, list_all_countries, NTC_inter, His-
torical_flows)

Function that checks for the possible interconnections of the countries included in the
simulation. If the interconnection is defined between two of the countries defined
by the user to perform the simulation with, it extracts the NTC between those two
countries. If the interconnection is defined between one of the countries selected by
the user and one country outside the simulation, it extracts the physical flows; it does

39

so for each pair (country inside-country outside) and sums them together creating the
interconnection of this country with the RoW.

Parameters

� Simulation_list – List of simulated countries

� list_all_countries – List of all countries

� NTC – Day-ahead net transfer capacities (pd dataframe)

� Historical_flows – Historical flows (pd dataframe)

DispaTools.invert_dic_df(dic)
Function that takes as input a dictionary of dataframes, and inverts the key of the
dictionary with the columns headers of the dataframes

Parameters dic – dictionary of dataframes, with the same columns headers
and the same index

Returns dictionary of dataframes, with swapped headers

DispaTools.load_csv(filename, TempPath=’.pickle’, header=0, skiprows=[],
skip_footer=0, index_col=None, parse_dates=False)

Function that loads a csv sheet into a dataframe and saves a temporary pickle version
of it. If the pickle is newer than the sheet, the later is not loaded again to increase
the computational efficiency.

Parameters

� file_excel – path to the excel file

� TempPath – path to store the temporary data files

DispaTools.load_set(input, string, set_name)
Load a particular set from the Dispa-SET input data structure (Obsolete for v2.1.0
onwards)

DispaTools.load_var(input, string)
Load a particular variable from the Dispa-SET input data structure v2.0 (Obsolete from
v2.1.0 onwards)

DispaTools.load_xl_to_pd(path_excel, file_excel, sheet_excel, path_pandas,
file_pandas, header=0)

Function that loads an xls sheet into a panda variable and saves it in a separate path.
If the saved variable is newer than the sheet, do no load the sheet again.

DispaTools.mylogspace(low, high, N)
Ad Hoc logspace function in which low and high are the first and last values of the
space

DispaTools.pyomo_format(sets, param)
Function that flattens the multidimensional Dispa-SET input data into the pyomo for-
mat: a dictionary with a tuple and the parameter value. The tuple contains the strings
of the corresponding set values

DispaTools.pyomo_to_pandas(instance, varname)
Function converting a Pyomo variable or parameter into a pandas dataframe. The
variable must have one or two dimensions and the sets must be provided as a list of
lists

Parameters

� instance – Pyomo Instance

� varname – Name of the Pyomo Variable (string)

DispaTools.shrink_to_64(x, N=64)
Function that reduces the length of the keys to be written to 64 (max admissible length
for GAMS)

Parameters

40

� x – String or list of strings

� N – Integer with the maximum string length (if different from 64)

Returns Shrinked string or list of strings

DispaTools.tuple_format(array)
Function that flattens a n-dimensional matrix and returns a dictionary with the values
and their coordinates in a tuple

7.2 DispaCheck

This files gathers different functions used in the Dispa-SET to check the input data

DispaCheck.check_df(df, StartDate=None, StopDate=None, name=’‘)
Function that checks the time series provided as inputs

DispaCheck.check_simulation_environment(SimulationPath, type=’pickle’, first-
line=7)

Function to test the validity of Dispa-SET inputs :param SimulationPath: Path to the
simulation folder :param type: choose between: “list”, “excel”, “pickle” :param first-
line: Number of the first line in the data (only if type==’excel’)

DispaCheck.check_units(config, plants)
Function that checks the power plant characteristics

7.3 IO - data

Collection of functions to write Dispa-SET input data to a gdx file and/or to a simulation
directory with one excel file per parameter.

Example: read gdx file:

data = GdxToList(gams_dir,’Results.gdx’,varname=’all’,verbose=True)

write it to a dictionary of dataframes:

dataframes = GdxToDataframe(data,fixindex=True,verbose=True)

@author: Sylvain Quoilin (sylvain.quoilin@ec.europa.eu)

Dispa-SET_io_data.GdxToDataframe(data, fixindex=False, verbose=False)
This function structures the raw data extracted from a gdx file (using the function
GdxToList) and outputs it as a dictionary of pandas dataframes (or series)

Parameters

� data – Dictionary with all the collected values (within lists), from Gdx-
ToList function

� fixindex – This flag allows converting string index into integers and
sort the data

Returns dictionary of dataframes

Dispa-SET_io_data.GdxToList(gams_dir, filename, varname=’all’, verbose=False)
This function loads the gdx with the results of the simulation All results are stored in
an unordered list

Parameters

� gams_dir – Gams working directory

� filename – Path to the gdx file to be read

� varname – In case online one variable is needed, specify it name (oth-
erwise specify ‘all’)

Returns Dictionary with all the collected values (within lists)

41

mailto:sylvain.quoilin@ec.europa.eu

Dispa-SET_io_data.GetGdx(gams_dir, resultfile)
Short wrapper of the two gdx reading functions (GdxToDataframe and GdxToList)

Parameters

� gams_dir – Gams working directory

� resultfile – Path to the gdx file to be read

Returns dictionary of dataframes

Dispa-SET_io_data.LoadConfig(ConfigFile)
Function that loads the Dispa-SET excel config file and returns a dictionary with the
values

Parameters ConfigFile – String with (relative) path to the Dispa-SET excel
configuration file

Dispa-SET_io_data.insert_symbols(gdxHandle, sets, parameters)
Function that writes all sets and parameters to the gdxHandle

Parameters

� sets – dictionary with all the sets

� parameters – dictionary with all the parameters

Dispa-SET_io_data.write_toexcel(xls_out, list_vars)
Function that reads all the variables (in list_vars) and inserts them one by one to excel

Parameters

� xls_out – The path of the folder where the excel files are to be written

� list_vars – List containing the Dispa-SET variables

Returns Binary variable (True)

Dispa-SET_io_data.write_variables(gams_dir, gdx_out, list_vars)
This function performs the following: (1) Use the gdxcc library to create a gdxHandle
instance (2) Check that the gams path is well defined (3) Call the ‘insert_symbols’
function to write all sets and parameters to gdxHandle

Parameters

� gams_dir – (Relative) path to the GAMS directory

� gdx_out – (Relative) path to the gdx file to be written

� list_vars – List with the sets and parameters to be written

7.4 Input generation

This is the main file of the Dispa-SET pre-processing tool. It comprises a single function
that generated the Dispa-SET simulation environment.

@author: S. Quoilin

GenerateInputs.BuildSimulation(config)
This function reads the Dispa-SET config, loads the specified data, processes it when
needed, and formats it in the proper Dispa-SET format. The output of the function is
a directory with all inputs and simulation files required to run a Dispa-SET simulation

Parameters config – dictionary with all the configuration fields loaded from
the excel file. Output of the ‘LoadConfig’ function.

7.5 Post Processing

Set of functions useful to analyse to Dispa-SET output data.

@author: Sylvain Quoilin, JRC

42

PostProcessing.AggregateByFuel(PowerOutput, Inputs, SpecifyFuels=None)
This function sorts the power generation curves of the different units by technology

Parameters

� PowerOutput – Dataframe of power generationwith units as columns
and time as index

� Inputs – Dispa-SET inputs version 2.1.0

� SpecifyFuels – If not all fuels should be considered, list containing
the relevant ones

Returns PowerByFuel Dataframe with power generation by fuel

PostProcessing.CountryPlots(inputs, results, c, rng=[])
Generates plots from the dispa-SET results for one spedific country

Parameters

� inputs – Dispa-SET inputs

� results – Dispa-SET results

� c – Considered country (e.g. ‘BE’)

PostProcessing.EnergyBarPlot(datain, results, PPindicators)
Plots the generation for each country, disaggregated by fuel type

Parameters

� datain – Inputs values (in the dataframe format: output of the func-
tion ds_to_df)

� results – dictionary with the outputs of the model (output of the
function GetResults)

� PPindicators – Por powerplant statistics (output of the function Per-
PowerPlantIndicators)

PostProcessing.FilterByCountry(PowerOutput, inputs, c)
This function filters the Dispa-SET Output Power dataframe by country

Parameters

� PowerOutput – Dataframe of power generationwith units as columns
and time as index

� Inputs – Dispa-SET inputs version 2.1.0

� c – Selected country (e.g. ‘BE’)

Returns Power Dataframe with power generation by fuel

PostProcessing.GetDemand(Inputs, c)
Get the demand curve of a specific country

Parameters

� Inputs – Dispa-SET inputs

� c – Country to consider (e.g. ‘BE’)

PostProcessing.GetPlotData(inputs, results, c)
Function that reads the results dataframe of a Dispa-SET simulation and extract the
dispatch data spedific to one country

Parameters

� results – Pandas dataframe with the results (output of the GdxTo-
Dataframe function)

� c – Country to be considered (e.g. ‘BE’)

Returns plotdata Dataframe with the dispatch data storage and outflows
are negative

43

PostProcessing.GetResults(path=’.’, cache=False, TempPath=’.pickle’)
This function reads the simulation environment folder once it has been solved and
loads the input variables together with the results.

Parameters

� path – Relative path to the simulation environment folder (current
path by default)

� cache – If true, caches the simulation results in a pickle file for faster
loading the next time

� TempPath – Temporary path to store the cache file

Returns inputs,results Two dictionaries with all the input and outputs

PostProcessing.PerPowerPlantIndicators(inputs, results)
Function that analyses the Dispa-SET results at the power plant level. Computes the
number of startups, the capacity factor, etc

Parameters

� inputs – Dispa-SET inputs

� results – Dispa-SET results

Returns out Dataframe with the main power plants characteristics and the
computed indicators

PostProcessing.ResultAnalysis(inputs, results)
Reads the Dispa-SET results and provides useful general information to stdout

Parameters

� inputs – Dispa-SET inputs

� results – Dispa-SET results

PostProcessing.UnitFuel(Inputs, shrink=True)
Function that associates its fuel to each unit from the Dispa-SET inputs

Parameters

� inputs – Dispa-SET inputs (version 2.1.0)

� shrink – If True, the unit name is reduced to 64, as in GAMS

Returns fuels Dictionary with the location of each unit

PostProcessing.UnitLocation(Inputs, shrink=True)
Function that associates its location to each unit from the Dispa-SET inputs

Parameters inputs – Dispa-SET inputs (version 2.1.0)

Returns loc Dictionary with the location of each unit

PostProcessing.colormap(f)
Function that associates a color to each dispa-SET fuel for plotting

The complete list can be obtained with:

matplotlib.colors.cnames

PostProcessing.dispatch_plot(demand, plotdata, level=None, rng=[])
Function that plots the dispatch data and the reservoir level as a cumulative sum

Parameters

� demand – Pandas Series with the demand curve

� plotdata – Pandas Dataframe with the data to be plotted. Negative
columns should be at the beginning. Output of the function GetPlot-
Data

44

� level – Optional pandas series with an aggregated reservoir level for
the considered zone.

� rng – Indexes of the values to be plotted. If undefined, the first week
is plotted

PostProcessing.imports(flows, c)
Function that computes the balance of the imports/exports of a given zone

Parameters

� flows – Pandas dataframe with the timeseries of the exchanges

� c – Country (zone) to consider

Returns NetImports Scalar with the net balance over the whole time period

PostProcessing.plot_rug(df_series, on_off=False, cmap=’Greys’)
Create multiaxis rug plot from a pandas Dataframe

Parameters: df_series: 2D pandas with timed index

on_off:

� If True all points that are above 0 will be plotted as one color.

� If False all values are colored based on their value.

cmap: palette name (from colorbrewer, matplotlib etc.)

Returns: plot

Function written by K. Kavvadias

7.6 DispaSolve

This worksheet contains the two main functions to solve the Dispa-SET optimization prob-
lem using PYOMO.

@author: ‘Sylvain Quoilin’

DispaSolve.DispOptim(sets, parameters, LPFormulation=False)
This is the main optimization function of Dispa-SET. Two operation are performed: 1.
Translation of the Dispa-SET data format into the pyomo format 2. Definition of the
Pyomo optimization model as a ConcreteModel

Parameters

� sets – Dictionary containing the sets (defined as a list of strings or
integegers)

� parameters – Dictionary containing the parameters of the optimization
problem (in the Dispa-SET 2.1.0 format)

Returns The Pyomo optimization model instance

DispaSolve.DispaSolve(sets, parameters, LPFormulation=False)
The DispaSolve function defines the rolling horizon optimization and saves each result
variable in a pandas dataframe. The definition of the rolling horizon must be included
into the Dispa-SET Config parameter’

Parameters

� sets – Dictionary containing the sets (defined as a list of strings or
integers)

� parameters – Dictionary containing the parameters of the optimization
problem (in the Dispa-SET 2.1.0 format)

Returns Dictionary of pandas dataframes with the optimization variables

THIS PAGE INTENTIONALLY LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK

Europe Direct is a service to help you find answers

to your questions about the European Union.

Freephone number (*):

00 800 6 7 8 9 10 11
(*) The information given is free, as are most calls (though some operators, phone boxes or hotels may

charge you).

More information on the European Union is available on the internet (http://europa.eu).

HOW TO OBTAIN EU PUBLICATIONS

Free publications:

• one copy:

via EU Bookshop (http://bookshop.europa.eu);

• more than one copy or posters/maps:

from the European Union’s representations (http://ec.europa.eu/represent_en.htm);
from the delegations in non-EU countries (http://eeas.europa.eu/delegations/index_en.htm);

by contacting the Europe Direct service (http://europa.eu/europedirect/index_en.htm) or
calling 00 800 6 7 8 9 10 11 (freephone number from anywhere in the EU) (*).

(*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you).

Priced publications:

• via EU Bookshop (http://bookshop.europa.eu).

K
J-N
A
-2
8
4
2
7
-E
N
-N

	Introduction
	Model Description
	Variables
	Sets
	Parameters
	Optimization Variables

	Optimisation model
	Objective function
	Demand-related constraints
	Power output bounds
	Minimum up and down times
	Storage-related constraints
	Emission limits
	Network-related constraints
	Curtailment
	Load shedding

	Rolling Horizon
	Power plant clustering
	MILP clustering
	LP clustering

	Implementation and interface
	Resolution Flow Chart
	Dispa-SET database
	Configuration File
	Simulation environment
	UCM_h.gms and UCM.gpr
	make_gdx.gms
	makeGDX.bat
	writeresults.gms
	Inputs.gdx
	InputDispa-SET - Sets.xlsx
	InputDispa-SET - Config.xlsx
	InputDispa-SET - [ParameterName].xlsx

	Post-processing

	Input Data
	Technologies
	Fuels
	Unit-specific or technology-specific inputs
	Countries
	Power plant data
	Common fields
	Storage units
	CHP units

	Renewable generation
	Storage and hydro data
	Inflows
	Storage level
	Variable capacity storage

	Power plant outages
	Interconnections
	Net transfer capacities
	Historical physical flows

	Fuel Prices

	Getting Started
	Prerequisites
	Using Dispa-SET with GAMS:
	Using Dispa-SET with PYOMO:

	Run the pre-processing tool
	Check the configuration file
	Pre-processing
	Check the simulation environment

	Run the optimisation
	Using the GAMS user interface:
	Using the GAMS command line:
	From Dispa-SET, using GAMS:
	From Dispa-SET, using PYOMO:

	Postprocessing

	Conclusions
	References
	Appendix 1: Dispa-SET api
	Appendix: API Documentation
	DispaTools
	DispaCheck
	IO - data
	Input generation
	Post Processing
	DispaSolve

