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Title  

EMHIRES dataset: Wind power generation. European Meteorological derived HIgh resolution RES generation time 

series for present and future scenarios  

 

Abstract 

EMHIRES is the first publically available European wind power generation dataset derived from meteorological 

sources that is available on NUTS-2 level. It was generated applying an innovative methodology capturing local 

geographical information to generate meteorologically derived wind power time series at high temporal and 

spatial resolution. This allows for a better understanding of the wind resource at the precise location of wind 

farms. 
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Executive summary 

Renewable energy sources for the generation of electricity (RES-E) directly relates to 

three of the five pillars of the Energy Union: the fully integrated energy market, climate 

action and emission reduction as well as research and innovation [1]. The deployment of 

large capacities of wind and solar energy impacts the electricity markets and challenges 

existing market designs, both at the wholesale and the retail level. At the same time it 

poses technical challenges resulting from the need to ensure a smooth operation of the 

European power system. Methodologies for assessing the adequacy need to be adapted 

in the presence of more RES-E [2]. Finally, investments are taking place into new 

technological solutions, helping to integrate RES-E as e.g. energy storage.  

Power system models are the tool of choice for assessing options along the three policy 

dimensions (market design, RES-E integration, research and innovation). High quality 

wind power and PV time series for long time periods are needed in order to produce 

model results that translate into robust policy advice. Moreover, data should be 

publically available if impact assessments are to be transparent and reproducible. 

However, no such dataset currently exists for Europe. The EMHIRES dataset addresses 

this need and provides a publically available time series for the generation of 

intermittent RES-E derived from meteorological data. 

EMHIRES applies an innovative methodology capturing local geographical information to 

generate meteorologically derived wind power time series at high temporal and spatial 

resolution. This allows for a better understanding of the wind resource at the precise 

location of wind farms. EMHIRES is able to capture the variability of wind energy, in 

particular peaks and ramps, in a much more accurate way than previous 

meteorologically derived time series. Using EMHIRES for power system analysis will 

increase the accuracy of generation adequacy assessments, renewable energy 

integration studies and market studies for flexibility technologies such as storage. 

This report details the first part of EMHIRES, covering wind energy production. Further 

publications are planned on PV energy and temperature corrected power demand. The 

datasets can be reviewed and readapted to new situations in the power system (e.g. the 

commissioning of new installations) as well as to future RES-E deployment scenarios. 

Chapter 1 explains the nature and cope of the work. The primary data sources used for 

creating EMHIRES are described in Chapter 2. Chapter 3 describes the methodology used 

for deriving wind power time series from meteorological data and information on wind 

power technology. In Chapter 4, the generated time series are compared with other data 

sources. Possible applications and possible future work is explained in Chapter 5. 
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1 Introduction 

The electricity sector is currently experiencing a structural transition. The goal of the 

European Union for Renewable Energy Sources (RES-E) to provide for at least 27% of 

the total energy consumption by 2030 could translate into 50% of total electricity 

production from renewables (RES-E) [1]. The Energy Union strategy includes the aim of 

the European Union to become "the number one in renewables" continuing the 

significant growth of RES-E experienced during the last decade [1]. 

However, the growing share of electricity production from solar and wind resources 

constantly increases the stochastic nature of the power system. As a consequence, 

planning and scheduling tools for the power sector have been updated and the study of 

power systems with a high share of intermittent RES-E has become an established field 

in Power System Analysis. 

The adequate modelling of high RES-E penetration systems crucially depends on the 

accurate representation of the spatial and temporal characterisation of these sources. 

RES-E data inherently bears the risk of being imperfect, inappropriate or incomplete 

which might lead to errors in power system studies which could be either overstating or 

downplaying the possible role of solar and wind energy in the future energy mix [3].  

In the case of wind power assessment, currently, there seems to be a clear trend to use 

weather derived time series generated by reanalysis, or the output from meteorological 

models, and then, to convert those results into power output using approximations of 

standard power curves applied for entire market areas, such as the studies developed by 

Electricité du France – European Electricity System with 60% RES [4], ADEME – Vers un 

mix électrique 100% renouvelable en 2050 [5] and NREL – Renewable Electricity Futures 

Study [6]. Any RES-E dataset used for assessing the European power system should 

keep a compromise between the geographical coverage, spatial resolution accounting for 

European climate zones and the diversity of the wind features as well as time intervals 

and period long enough to capture the climate variability. Care needs to be taken with 

respect to technical data of wind turbines such as hub height and power curves of each 

turbine type at each wind farm. However, there currently exists no publicly available 

robust datasets meeting all these requirements [7]. 

The Knowledge Management Unit at the directorate for Energy, Transport and Climate, 

DG-Joint Research Centre (JRC) has developed the EMHIRES dataset (European 

Meteorological HIgh resolution RES time series) to fill this gap. This first report describes 

the first part of the work; leading to the development of EMHIRES Wind Power 

Generation database. This database is released as open-source according to the JRC 

Data Policy.  

1.1 Scope of EMHIRES 

EMHIRES provides RES-E generation time series for the EU-28, Norway, Switzerland and 

the non EU countries of the Western Balkans. The wind power time series are released at 

hourly granularity and at different aggregation levels: by country (onshore and 

offshore), power market bidding zone, and by the European Nomenclature of territorial 

units for statistics (NUTS) [8] defined by EUROSTAT; in particular, by NUTS 1 and NUTS 

2 level.  

The time series provided by bidding zones include special aggregations to reflect the 

power market reality where this deviates from political or territorial boundaries, such as 

in Ireland (Republic of Ireland and Northern Ireland forming one market zone), Norway, 

Sweden, Denmark and Italy (separated in 5, 4, 2 and 6 different zones, respectively 

where there is installed wind farms). In the case of Greece, the time series are released 

for the interconnected zone, i.e. the wind farms located on islands that are not 

connected with the mainland power system, are excluded.  

The overall scope of EMHIRES is to allow users to assess the impact of meteorological 

and climate variability on the generation of wind power in Europe and not to mime the 
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actual evolution of wind power production in the latest decades. For this reason, the 

hourly wind power generation time series are released for meteorological conditions of 

the years 1986-2015 (30 years) without considering any changes in the wind generation 

fleet. The installed wind farms fleet is then fixed as the one installed at the end of 2015. 

For this reason, data from EMHIRES should not be compared with actual power 

generation data other than referring to the reference year 2015.  

In order to overcome the known limitations arising from the direct use of reanalysis data 

in wind power generation modelling, the meteorological data is derived from a highly 

detailed wind resource applying a novel geographical downscaling methodology that has 

been validated during this work. 

1.2 Comparison of EMHIRES with other datasets 

EMHIRES is a high quality (high temporal and geographical resolution) dataset of RES-E 

time-series derived from weather data and from information on the wind/solar power 

generation facilities installed across Europe.  

Currently, there are three major publically available datasets for RES-E generation, all 

offering at least the spatial coverage of Europe.  

 The 'Global Atlas for Renewables' managed by the International Renewable 

Energy Agency (IRENA) [9],  

 The 'Global Wind Atlas' of the Danish Technological Institute (DTU) [10] and  

 'Renewable.ninja' developed jointly by the Swiss Federal Institute of Technology 

in Zurich (ETHZ) and the Imperial College of London [11].  

A number of non-public datasets using similar methodology have been also created 

recently, such as e.g. the Pan European Climate Database (PECD) used by ENTSO-E for 

regional adequacy assessments (based on [12]). The information provided on this 

dataset does not allow for an in depth comparison with EMHIRES.  

The Atlases from IRENA and DTU publish annual and monthly averages of wind and solar 

power production at any location in the world on a web based platform. Such datasets 

are typically used by long term energy system models with few inter-annual time slices. 

The atlases do not however contain time-series with a sub-annual resolution. Like 

EMHIRES, they have been derived combining weather data and information on 

renewable energy technologies. Renewable.ninja contains hourly time series at country 

level such as the EMHIRES dataset and thus addresses comparable applications. The 

approach to obtain the time series ( [13] and [14]) is comparable to EMHIRES: it uses 

the same primary source for weather data but follows a simpler approach in the 

conversion to wind power output. The low resolution weather variable is corrected with a 

bias-correction factor determined at country level, missing the information of the 

physical local effects such as the speed up due to orographic or roughness effects and 

the increased variability as a function of the wind direction. Indeed these features are 

known not to be captured by using coarse resolution reanalysis or applying a power 

correction factor at country level; and not being able to aggregate at different 

aggregation levels (NUTS 1, NUTS 2 or bidding zone). 

The strength of EMHIRES with respect to those three alternatives lays in the combination 

of the most recent advances in the fields of weather and wind power. EMHIRES uses a 

new approach based on the Wind Global Atlas to obtain high quality hourly weather data 

(wind speed) at the locations of wind farms. The dataset has been validated with the 

most recent high resolution wind resource products, released by the European Centre for 

Medium-Range Weather Forecast (ECMWF) [15]. As opposed to the other datasets, 

EMHIRES takes into account wind farm specific power curves for each location. In 

addition, EMHIRES is currently the only source of RES-E generation time series published 

at different regional scales, namely: Member State, ENTSO-E bidding zone, and NUTS 1 

and NUTS 2 regions. 
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2 Data and tools 

This section describes the data used to generate the EMHIRES wind power time series: 

i.e., the primary meteorological datasets and the wind farms dataset characteristics to 

convert wind speed into power. 

2.1 Wind farms data 

The wind farms database procured from the 'thewindpower.net' [16] has been used as 

the primary source to define the characteristics of each wind farm included in EMHIRES. 

The original database includes worldwide information for onshore and offshore wind 

farms, reporting 292 GW (20,635 wind farms) of onshore wind farms in operation and 

23 GW (510 wind farms) under construction as for the end of 2015. For the same cutting 

date, as regards offshore wind farms, the database includes 10 GW (122 wind farms) in 

operation, 6 GW under construction (32 wind farms), 41 GW approved (125 wind farms) 

and 173 GW (471 wind farms) planned. 

The original database contains a significant amount of gaps, inconsistencies and 

inaccuracies; therefore it has been reconstructed by gap filling and statistical 

homogenisation. To validate the improved database the aggregated installed capacities 

have been compared with data from (among others) different European Transmission 

System Operators (TSOs). A detailed description of the wind farms database 

improvements is given in paragraph 3.3. 

2.2 Meteorological data 

The primary source of meteorological data used in EMHIRES comes from the NASA 

atmospheric reanalysis dataset which was generated within the Modern Era 

Retrospective-Analysis for Research and Applications (MERRA) project [17]. The MERRA 

dataset has an hourly temporal resolution as opposed to other reanalysis datasets which 

are only published in intervals of several hours. It has shown a good correlation with 

wind measurements at relevant heights. Pearson's correlation coefficients are around 

0.85 on an hourly basis and 0.94 on a monthly basis for measurements in terrain with 

low complexity [17]. 

MERRA has been chosen for developing EMHIRES because it is the only validated source 

at hourly frequency covering a period of 30 years over Europe, calibrated ex post with 

measurements. The MERRA reanalysis integrates a variety of observing systems with 

numerical models to produce a temporally and spatially consistent synthesis of 

observations. The ex-post calibration is one of the main aspects in which reanalyses 

differ from a meteorological model which solves equations describing the physical 

atmospheric processes using statistical approximations and weather observations just as 

input.  

MERRA datasets are the output of the Goddard Earth Observing System Model v.5 

(GEOS-5) and it's Atmospheric Data Assimilation System (ADAS), version 5.2.0. The 

data streams assimilated by the GEOS-5 DAS come from radiosondes, pilot balloon 

winds, wind profiles, radar winds, aircraft reports, dropsondes, spectroradiometer 

(MODIS water vapour winds), surface land observations, surface ship and buoy 

observations. 

The variables selected for EMHIRES come from the "IAU 2d atmospheric single-level 

diagnostics" products, extracted from the 'on-the-fly' and daily data sub-setting product 

[18]. The native horizontal resolution is 0.66-degree longitude by 0.5-degree latitude 

(70 km x 60 km approximately in the area covered by EMHIRES: West -11o North 73o 

South 35o and East 40o) and it is available at 72 levels. Surface data, near surface 

meteorology, selected upper-air levels and vertically integrated fluxes and budgets are 

produced at one-hour intervals. The 30 year-period selected ranges from the 1st of 

January 1986 to the 31st of December 2015 from 00:30 to 23:30 Universal Time 

Coordinates (UTC) at hourly frequency. The variables extracted are: 
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 Eastward and Northward wind at 2m above displacement height (ms-1) (U2m, 

V2m);  

 Eastward and Northward wind at 10m above displacement height (ms-1) (U10m, 

V10m);  

 Eastward and Northward wind at 50m above displacement height (ms-1) (U50m, 

V50m);  

The ECMWF high resolution wind products at 100m, available from the European 

Centre for Medium-Range Weather Forecasts (ECMWF) is used for validating the high 

resolution time series generated in EMHIRES for the years 2012 to 2015. As the ECMWF 

dataset is only available for 4 years, it was not used as a primary source for generating 

the EMHIRES time series [19]. It is not an open-source dataset and has been obtained 

by JRC under its current cooperation agreement with ECMWF. 

The new dataset represents a valuable improvement with respect to coarse reanalysis 

data and to the direct extrapolation of ECMWF 10-m wind, which was shown to produce 

a considerable degradation of energy power production with respect to observed values 

[19]. The new variable of ECMWF meets the need of calculating the wind speed at 

turbine height level, and is the result of the vertical linear interpolation from the two 

nearest ECMWF model levels, which are, respectively at approximately 70 and 110 m. In 

order to obtain hourly data, horizontal wind fields are taken from ECMWF analyses at 

00:00 and 12:00 UTC, and, for the remaining times, from the short-term forecasts in the 

range +1 - +11 hours. At such a very short range, the forecasts are nearly 

indistinguishable from the analyses, so that they can be used as realistic surrogates at 

the times when the latter are missing (also, we do not consider the analyses at 06:00 

and 18:00 UTC but the forecast at +6 h). Data cover a wide region extending from 30°N 

to 75° N and from 25° W to 45°E, considering both onshore and offshore grid points 

almost all over Europe, including Iceland. 

2.3 Actual wind power generation time series and statistics  

The calculated wind power time series in EMHIRES are validated against the actual wind 

power generation outputs provided by the Transmission System Operators (TSOs) for 

the year 2015 at country level and by bidding zone1. The non EU Members from the 

Western Balkans are also included although the currently installed capacity is negligible. 

The main source for TSOs time series is the Transparency Platform provided by the 

European Network of Transmission System Operators for Electricity (ENTSO-E) [20] in 

agreement with Regulation 543/2013 [21]. In case data are not available on the ENTSO-

E transparency platform (e.g. Croatia or Italian bidding zones) or contains significant 

amount of missing values (e.g. United Kingdom, Republic of Ireland, Cyprus), data from 

the corresponding National Transmission System Operator was preferred as a source. 

Regardless this, in a few cases it has been impossible to obtain time series (e.g. 

Bulgaria, Luxemburg, Slovenia and Slovakia).  

Table 2 shows the availability and source of the time series used for the validation and 

the basic descriptive statistics of the observed time series. To crosscheck the level of 

accuracy of the ENTSO-E and national hourly time series, the sum over all hours in 2015 

is compared with the annual generation reported by the same source in a different 

                                           

1 According to Regulation 543/2013, bidding zones are the largest geographical areas 

within which market participants are able to exchange energy without capacity 

allocation. Bidding zones in Europe are usually defined by national borders; however, 

some are larger than national borders (e.g. Austria and Germany) while other zones 

extend only over a part of a country due to structural characteristics of the national 

transmission system (e.g. Italy, Norway or Sweden) or because of the presence of 

different synchronous systems (e.g. Denmark). 
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section of its web data repository. It is observed there are mismatches for most of the 

countries between the total annual production reported and the sum of the hourly 

reported values.  

The ENTSO-E time-series include hours that are not registered while the total annual 

generation could have been metered and reported separately e.g. for support scheme 

payments. For example 68% of hourly values of the ENTSO-E time series for Bulgaria 

are missing on the transparency platform yet an annual value is published by the same 

organisation. 

ENTSO-E publishes detailed generation figures for units with installed capacity equal to 

or above 100 MW, as well as aggregated generation outputs per market time units and 

production types. According to Regulation 543/2013, the information shall be provided 

for all bidding zones only in Member States with more than 1 % feed-in of wind or solar 

power generation per year or for bidding zones with more than 5 % feed-in of wind or 

solar power generation per year. 

The EMHIRES wind power time series are normalised to the ENTSO-E annual production 

statistics reported (values in bold in Table 2). This analysis does not compare these 

figures to national statistics or data reported for determining the subsidies received by 

operators of wind farms. The reasons that national borders do not always coincide with 

market zones (e.g. Denmark, United Kingdom), renewable energy produced might be 

outside of the interconnected system (Greece) or generation by auto-producers might 

not be included in the statistics of the TSO. 

The EMHIRES dataset also includes time series by NUTS 1 and NUTS 2 (see the tables in 

the annex) region. For the validation at NUTS 1 and NUTS 2 level a search has been 

done for regional statistics. However, for most of the countries, neither time series nor 

monthly or annual statistics are yet available for 2015. Some EU Member States (e.g. 

the UK) will publish annual statistics on a regional level at the time of release of this 

report. In the case of Spain [22], there are monthly statistics of wind generation by 

region, and in the case of France [23] and Finland, the statistics available show the total 

annual production by regions (Figure 1 and Table 1). The territorial reform of France, 

which became effective in 2016, led to new NUTS 1 and NUTS 2 regions as shown in the 

table below.  

 

Figure 1 Example of monthly and annual total production by regions for Spain and for 
France, respectively. 



 

8 

 

Table 1 - Translation of existing NUTS-2 codes to the new French territorial regions 

Regions defined in EMHIRES NUTS 2 codes 

Auvergne-Rhône-Alpes FR72,FR71 

Bourgogne-Franche-Comté / Bourgogne Franche-Comte FR26,FR43 

Bretagne FR52 

Centre-Val de Loire FR51, FR24 

Corse FR83 

Grand-Est / Alsace Champagne-Ardenne Lorraine FR41, FR42,FR21 

Hauts-de-France / Nord-Pas-De-Calais- Picardie FR30, FR22 

Ile-de-France FR10 

Normandie FR23,FR25 

Nouvelle-Aquitaine / Aquitania, Limousin, Poitou-Charentes FR61, FR63, FR53 

Occitanie / Languedoc-Roussillon Midi Pyrenees FR81, FR62 

Pays de la Loire FR51 

Provence-Alpes-Côte d'Azur FR82 
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Table 2 availability and source of the time series used for the validation and the basic descriptive statistics for the ENTSOE wind power 
time series for 2015 

Country Bidding zone Source 25p 50p Mean 75p Max %NA Sum h (GWh) Annual (GWh) 

Austria (AT)   ENTSO-E 132 377 561 862 2176 0 4912 3989 

Belgium(BE)   ENTSO-E 73 190 280 419 1053 1 2429 5380 

Bulgaria (BG)   ENTSO-E  34 101 149 236 570 68 419 1436 

Switzerland (CH)   ENTSO-E 2 4 5 8 31 1 52 132 

Cyprus (CY)    DSM 5 15 20 30 111 10 79 231 

Czech Republic (CZ)   ENTSO-E 26 52 68 94 280 0 596 563 

Germany (DE)   ENTSO-E 2894 5690 7859 11102 31162 1 68284 75680 

Denmark (DK) DK1 DK2 ENTSO-E 325 788 1009 1599 3756 0 8837 14086 

Estonia (EE)   ENTSO-E 26 55 72 107 234 1 624 696 

Spain (ES)   ENTSO-E 2887 4884 5477 7469 17436 0 47892 48107 

Finland (FI)   ENTSO-E 100 202 236 326 818 0 2059 2329 

France (FR)   ENTSO-E 1103 1736 2238 3012 7450 0 19592 21067 

Greece (GR)   ENTSO-E 147 323 405 625 1412 0 3540 3744 

Croatia (HR)   HOPS 21 64 90 151 324 0 788 788 

Hungary (HU)   ENTSO-E 18 56 81 121 304 10 642 670 

Ireland (IE) Ireland (SEM) EIRGRID 266 674 759 1211 2024 0 2027 6536 

Italy (IT) NORD, CNOR, SUD, 
CSUD, SICI, SARD 

TERNA NA NA NA NA NA 0 NA 14707 

Lithuania (LT)   ENTSO-E 19 57 81 127 327 3 697 805 

Luxemburg (LU)   NA NA NA NA NA NA 100 NA 95 

Latvia (LV)   ENTSO-E 3 8 12 19 44 0 105 146 

Netherlands (NL)   ENTSO-E 353 765 972 1456 3114 44 5674 7134 

Norway (NO) NO1 – NO5 ENTSO-E NA NA NA NA NA 0 NA 2515 

Poland (PL)   ENTSO-E 410 918 1210 1783 4223 0 10570 10365 

Portugal (PT)   ENTSO-E 495 1026 1294 1923 4192 0 11335 11336 

Romania (RO)   ENTSO-E 208 543 754 1161 2687 8 6079 6993 

Sweden (SE) SE1 - SE4 ENTSO-E 1023 1751 1894 2651 4958 1 16410 16618 

Slovenia (SI)   NA NA NA NA NA NA 100 NA NA 

Slovakia (SK)   NA NA NA NA NA NA 100 NA 6 

United Kingdom (UK) GB   ELEXON 71.5 1261 2407 2668 3999 0 8515 23963 
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3 Description of methodology 

The general approach to convert wind resources into power generation consists in 

converting wind speed data from weather models or observations using power curves. 

The power curves, which are turbine-dependant, provide the value of electrical power 

output as a function of wind speeds at the hub height. The approach followed to develop 

EMHIRES converts the wind resources into power generation combining a high detailed 

wind farm database with a high spatial and temporal resolution wind speed dataset. The 

methodology used for EMHIRES is summarised in Figure 2. 

This section describes in detail the methodology applied and the IT infrastructure and 

the software used while next section 4 summarizes the results obtained and their 

validation. 

 

 
Figure 2 Summary of the steps followed to develop EMHIRES dataset 
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3.1 State of the art 

One of the most important aspects when generating wind power from the wind resource 

is how to deal with the uncertainties. A cascade of uncertainties emerges from different 

parts of the methodology and tools applied for transforming a meteorological variable 

into power generated, as e.g. described by [24] (Figure 3). 

Among all RES-E, wind power forecasts have the highest uncertainties mainly due to the 

temporal and spatial variability and the little predictability of the wind resource. If the 

wind speed is selected from a meteorological model, this could add a bias in the wind 

fields (determined at 10 m height or at other model levels) because the physical 

parameterisations of the meteorological model do not perfectly simulate the dynamics of 

the lower layer of the atmosphere. Moreover, the wind fields, obtained at 10 m height or 

at other model levels, need to be corrected to the hub height and this interpolation 

method also contributes to the uncertainty [25]. 

The wind speed is then converted into wind power generation through a power curve. 

The selection of the power curve is also critical since each type of turbine has a different 

power curve. The area of the wind farm, the number and location of the turbines 

composition, its geographical position and the wake effect originating from the fluid 

dynamic interactions inside wind farms play an important role in the accuracy of 

forecasting wind power generation (see for example [26]). 

 

Figure 3 Sources of errors in the wind power forecast contributing to the cascade of 

uncertainties 

To deal with and reduce the uncertainties, the studies identified in the literature aim at 

either:  

 Developing more accurate numerical and statistical wind power forecasting 

techniques, or,  

 Studying the wind power forecasting error (WPFE) as a single probability density 

function, describing the error variability as a range from the lowest to the highest 

value of the distribution in the historical records.  

A detailed review about the methods and advances in forecasting wind power generation 

can be found in [27]. Studies focused on reducing the WPFE apply techniques that 
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identify probability distributions of random variables and calculate their distribution 

parameters based upon historical trends.  

3.2 Wind speed at high spatial resolution 

The following subsections describe the methodology used in EMHIRES to obtain high 

spatial and temporal resolution wind speed data at the hub height of each wind farm. As 

a first step, the wind components are extracted from the NASA-MERRA reanalysis and 

pre-processed; then, a new statistical spatial downscaling technique is applied to obtain 

the wind speed time series, and finally a power law profile is used to vertically 

interpolate the wind speed at hub height. 

3.2.1 Extraction of the time series at site level 

Hourly eastward and northward wind components at three different heights 2, 10 and 50 

m have been obtained from MERRA, in NetCDF format, on a grid of 60 km x 70 km 

resolution approximately for the study period ranging from 1986 to 2015. These gridded 

hourly values are interpolated at each wind farm location where the wind speed and 

direction is calculated on the basis of equations. (1) – (3)  

 𝐷𝑝𝑒𝑟𝑅 (180/ π)  = 57.29578  (1) 

 𝐷𝑖𝑟 = 𝑎𝑡𝑎𝑛2 (−𝑢, −𝑣) ∗ 𝐷𝑝𝑒𝑟 = 270 − (𝑎𝑡𝑎𝑛2(𝑣, 𝑢) ∗ 𝐷𝑝𝑒𝑟𝑅)  (2) 

 𝑊𝑆 = 𝑠𝑞𝑟𝑡 (𝑢2+ 𝑣2)  (3) 

Where DperR is the argument arctangent functions to convert angles into radians 
needed to obtain the geographic wind speed. 𝐷𝑖𝑟 Is the direction with respect to true 

north, (0=north, 90=east, 180=south, 270=west) and WS is the horizontal wind speed. 

3.2.2 Statistical spatial downscaling of hourly wind speed variations 

Although the data used are taken from a reanalysis and consequently should have lower 

errors compared to forecasts, there are still uncertainties partly due to the limited spatial 

resolution. The spatial resolution selected (60 km x 70 km) is too coarse to capture local 

effects. Figure 4 shows why the spatial resolution of the wind resource data is relevant, 

taking as an example a coastal area. In this case, it is very evident as high wind spots 

are not captured using low resolution data. Using coarse resolution meteorological data 

for power system analysis can lead to significant errors. A deviation of 10% of the total 

annual production would result in the case of Spain [3] Therefore, in EMHIRES a 

statistical downscaling technique is applied to capture the effect of fine-scale forcing, in 

particular in areas characterised by fine spatial variability of features such as rugged 

topography, very diverse land surface conditions or sea-land interactions. 

 

Figure 4 Typical wind speed file from a meteorological model or a reanalysis including 
three spatial resolutions (15, 5, 2 km). 
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The downscaling technique is applied to capture local effects due to the orography and 

the roughness of the terrain. It is not applied to the offshore wind farms for which the 

power generation is calculated from MERRA primary data. 

The technique employed is a robust and established technique based on a probabilistic 

approach and aimed at predicting the changes in the probability density function (pdf) of 

local scale wind speed conditioned on large-scale hourly wind speed predictors [28]; 

[29]. The analytical expression summarizing the methodology was developed in [30] and 

applied to downscale daily wind speed time series form a meso-scale meteorological 

model to the wind farm level. 

EMHIRES is based upon the same algorithms as used by [30] but the large scale time 

series are available at hourly-based frequency (namely, the HIRES dataset) while the 

microscale hourly wind speed distribution is provided by the Global Wind Atlas (GWA) 

developed by the Danish Technical University.  

For each wind farm location, the Weibull distribution function best describing the HIRES 

hourly data series is computed and parameters Ameso and kmeso determined for both the 

10m and 50m heights. In the same locations and for the same heights, Amicro and kmicro 

given by Global Wind Atlas are also collected. For both probability distribution functions 

(Figure 5), the related cumulative distribution functions Fmicro and Fmeso are computed by 

the Weibull distribution properties as  

 
𝐹𝑥(𝑋) = 1 − e−(

x
𝐴

)
𝐾

 
(4) 

Each value of xmeso arising from the HIRES hourly time series (4) it is then associated to 

the value of xmicro leading to equal values of Fmeso and Fmicro, as described in equations (5) 

and (6) 

 𝐹𝑚𝑖𝑐𝑟𝑜(𝑋𝑚𝑖𝑐𝑟𝑜) =  𝐹𝑚𝑒𝑠𝑜(𝑋) (5) 

 
1 − e

−(
𝑥𝑚𝑖𝑐𝑟𝑜
𝐴𝑚𝑖𝑐𝑟𝑜

)
𝑘𝑚𝑖𝑐𝑟𝑜

=  1 − e
−(

𝑥𝑚𝑒𝑠𝑜
𝐴𝑚𝑒𝑠𝑜

)𝑘𝑚𝑒𝑠𝑜

 
(6) 

Leading to the following direct relation between xmicro and xmeso that has been practically 

implemented in the downscaling software 

 𝑥𝑚𝑖𝑐𝑟𝑜 =  𝐴𝑚𝑖𝑐𝑟𝑜 (
𝑥𝑚𝑒𝑠𝑜

𝐴𝑚𝑒𝑠𝑜

)

𝑘𝑚𝑒𝑠𝑜
𝑘𝑚𝑖𝑐𝑟𝑜

 (7) 

 

Figure 5 Shows in a graphical form the downscaling procedure applied. 
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To calculate the wind power generation time series, the HIRES wind speed time series 

are then vertically interpolated to the hub height of each wind farm using a power law 

profile. 

 𝑊𝑆2 = 𝑊𝑆1

𝑙𝑛(
ℎ2
𝑧0

)

𝑙𝑛(
ℎ1
𝑧0

)
  𝛼 =

𝑙𝑜𝑔 (
𝑊𝑆1
𝑊𝑆2

)

log (
ℎ1
ℎ2

)
 (6) 

The value of 𝛼 is calculated using the MERRA-derived wind speed time series at 10 and 

50 m height. Once 𝛼 is identified, the same profile is used to estimate the wind speed at 

the given hub height of each wind farm (𝑊𝑆𝐻𝐻). 

 𝑊𝑆𝐻𝐻 = 𝑊𝑆1 (
𝐻𝐻

ℎ1

)
𝛼

 (7) 

However, although a finer spatial resolution gives more accurate results, in some cases 

it adds an extra factor to the uncertainties' cascade, that is, the progressive 

accumulation of all sources of uncertainty. Therefore, to assess the degree of 

improvement of the downscaling technique additional wind speed datasets are used to 

analyse the variability and correlation of wind speeds at different spatial resolutions. 

Three different datasets have been selected for the comparison, namely: 

 MERRA100: 100 m wind speed time series vertically interpolated form 10 and 50 

m wind speed MERRA reanalysis (70 km x 70 km spatial resolution) 

 ECMWF100: 100 m wind speed (12 x 12 km spatial resolution) extracted from 

the ECMWF available for a period four-years period (2012-2015) 

 HIRES100: 100 m wind speed at 100 m downscaled to wind farm level. This is 

the dataset developed in EMHIRES, applying the downscaling technique to the 

MERRA reanalysis. 

3.3 Conversion into wind power generation 

The wind speed at hub height is converted into power using the reconstructed wind farm 

database from 'thewindpower.net'.  

In order to define a robust wind farm database the original data acquired from the 

commercial data provider underwent a data quality and data gap filling procedure. 

Moreover, a wind power curve was associated to each wind farm. This procedure has 

involved wind farms declared in production phase (status = production) and 

commissioned before end 2015 (commissioning year <2016 or absent) and it is 

described in next two paragraphs (Figure 6).  

After the reconstruction, the database contains 16171 wind farms located in European 

countries, 85 of which are offshore. In addition, to evaluate the quality of the database it 

has been compared the total installed capacity with ENTSOE statistical factsheet [31], 

studied the hub height distribution by country and by manufacturer versus 

commissioning year and turbine type and the distribution of the manufacturers by 

country. These add up to 95% of the installed capacity reported in the ENTSO-E 

statistical factsheet, while the original database matched 89% (Table 3).  
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Figure 6 Wind farms locations across Europe as reported in the Wind Power database 

Table 3 Comparison of the total installed power at the end of 2015 according to the 

Wind Farm Database (WFDB) and the ENTSO-E statistical factsheet before and after the 
geographical location gap filling. 

Country ENTSOE  
(MW) 

WDFB  
(original)  

(MW) 

WFDB 
 (gaps filled) 

Match WFDB 
(original) with 

ENTSOE  
(%) 

Match WFDB 
(gaps filledr) 

with ENTSO-E 
(%) 

Austria 1981 2084 2099 105.2 106.0 

Belgium 2172 1861 1861 85.7 85.7 

Bulgaria 701 586 637 83.7 90.9 

Croatia 384 355 355 92.6 92.6 

Cyprus 155 145 145 94.1 94.1 

Czech 277 306 323 110.7 116.8 

Denmark 5082 4645 5134 91.4 101.0 

Estonia 301 290 302 96.5 100.5 
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Country ENTSOE  
(MW) 

WDFB  
(original)  

(MW) 

WFDB 
 (gaps filled) 

Match WFDB 
(original) with 

ENTSOE  
(%) 

Match WFDB 
(gaps filledr) 

with ENTSO-E 
(%) 

Finland 1082 754 769 69.7 71.1 

France 10312 9464 9585 91.8 93.0 

Germany 43429 36044 38261 83.0 88.1 

Greece 1775 1396 1869 78.7 105.3 

Hungary 328 486 512 148.3 156.3 

Ireland 2400 2076 2300 86.5 95.8 

Italy 8750 8805 9469 100.6 108.2 

Latvia 70 52 52 75.0 75.0 

Lithuania 290 195 250 67.4 86.3 

Luxembourg 600 560 58 93.8 97.2 

Netherlands 3641 3108 3153 85.4 86.6 

Norway 860 835 892 97.2 103.7 

Poland 5186 3243 3356 62.5 64.7 

Portugal 4826 4847 4931 100.4 102.2 

Romania 2923 2552 2897 87.3 99.1 

Slovakia 3 3 3 104.7 104.7 

Slovenia 3 5 5 183.3 183.3 

Spain 23003 22260 23237 96.8 101.0 

Sweden 3029 3242 4173 107.1 137.8 

Switzerland 60 60 60 100.0 100.0 

UK 13563 12801 13412 94.4 98.9 

Turkey NA 3424 3949 NA NA 

Ukraine  NA 393 578 NA NA 

TOTAL 131586 122568 130111 89.7 95.2 

 

3.3.1 Wind farm database completeness, gap filling and analysis 

Missing values in the database include fields such as: the installed capacity of each wind 

farm, the number of turbines within a wind farm, turbine type, manufacturer, hub 

height, swept area, minimum power output, maximum power output and nominal power 

output, the geographical location including onshore or offshore siting, the distance to the 

shore, the commissioning year or the operational status. 

Gap filling and the statistical approximations have been calculated based on a number of 

criteria described below.  

Installed power of each wind farm 

Farms with no figure provided for the installed power (0.14% of the entries in the 

database) have been excluded from further analysis since there is no indication to fill the 

missing records.  

Geographical location 

For the wind farms with no indication of longitude and latitude but where the fields "city" 

and "area" were available; an approximate location has been found through Google 
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maps (Table 3). Wind farms with missing longitude and latitude, city and area (6.5% of 

the total capacity) have been excluded from the list of farms used in the analysis. After 

filling the gaps the excluded installed power has been reduced to 3.5% of the total since 

the 3% of these records do not include any type of information (latitude-longitude, city 

or area). 

Hub height of each wind farm  

In the case of wind farms missing the "hub height" field, two options have been applied: 

If the 'turbine' field for a wind farm is filled in, the hub height is assigned equal to the 

average value of hub heights of all win farms of having the same turbine type, if 

available. If the 'turbine' field is not available for a wind farm, the hub height is assumed 

to be equal to the average of hub heights of the corresponding country (Figure 7). After 

gap filling, all records include a hub height: 39% of the records the original entry and 

61% and estimate as described above. The Vestas V90 was found to be the most 

common turbine type in the database. There is also strong correlation between the hub 

height of the turbines and the year of the construction.  

 

Figure 7 Hub height distribution of the original wind farm database for all countries 
selected 

Country, bidding zone, NUTS 1 and NUTS 2 information 

The original database did not contain information NUTS region in which wind farms are 

located. For this reason, the wind farm database has been spatially-joint with the 

European administrative units at NUTS-2 level using the ArcGIS v10.1 software. Using a 

shape- file [32] the administrative units have been spatially joined with the geographical 

coordinates (WGS84 georeferenced) of the wind farm database. It was possible to join 

96.5% of the total records (16,736 wind farms). The remaining 3.5% are not included 

since no geographical information was available.  

3.3.2 Power curve parameterisation 

One power curve is assigned to each wind farm considering the characteristics of the 

wind farm: design of the turbine and manufacturer, and swept area of the turbines, 

installed power and minimum, nominal and maximum wind power. 

The power curves are built using as primary data the turbine database from The Wind 

Power (wwwTheWindPower.dk) merged with an internal database including information 

of power curves that provides 1061 different power curves from 160 different 

manufacturers.  
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As described in the previous paragraph, after data check the database contains 16171 

records to be assigned a power curve Records missing the direct indication of the turbine 

type are the 28% over the total. A power curve was associated to these records, based 

on the following criteria:  

If at least partial information about the corresponding power curve was available (17% 

of the missing values), such as the minimum, nominal, maximum wind speeds and the 

power; an interpolation was calculated based on the fundamental equations of wind 

power. That is, the power output of the wind turbine depends on the amount of air 

(volume); the speed of the air (velocity) and the mass of air (density) flowing through 

the area of interest (flux). Based on the relation between kinetic energy, mass and 

speed, 

 𝐾𝐸 =
1

2
∗ 𝑚 ∗ 𝑣2 (9) 

The power of the wind turbine is the kinetic energy per unit of time: 

 𝑃 =
1

2
∗ 𝑚̇. ∗ 𝑣2 (10) 

 𝑚̇ = 𝑑𝑚/𝑑𝑡 =  ∗  A ∗  v  (11) 

 𝑃𝑤 = 𝐶𝑝 ∗  
1

2
∗  ∗  A ∗ 𝑣3  (12) 

Where 𝑚̇ = 𝑑𝑚/𝑑𝑡 (mass flow), the equation based on fluid mechanics (11) gives the 

mass flux rate (density * volume flow). Then, the power P is a function of the cube of 

the velocity; it is thus proportional to the air density and to the area swept by the rotor. 

The power coefficient Cp, describes the fraction of the wind resource that is captured by 

the turbine. 

 𝐶𝑝 =
𝑃𝑡

𝑃𝑤
  (13) 

The Betz limit [33] sets a maximum of 𝐶𝑝 = 59% which is the best a conventional wind 

turbine can do in converting wind energy into electrical energy. In case that no data is 

available on the real power extracted by the turbine (given by each manufacturer for 

each turbine type, a correction factor (Cf) is interpolated between the minimum and the 

nominal thresholds by dividing the total wind power contained in the wind resource for 

each turbine (i.e. the theoretical power (Pt)) by the averaged power curve calculated for 

each manufacturer2. 

On the contrary, if there is no additional information and the 'turbine type' record is 

absent (11% of the missing cases), a statistical approximation is applied to assume a 

most probable power curve. Vestas is the largest manufacturer equipping 3,385 wind 

farms followed by Enercon with 2,432 wind farms, Neg-Micon with 1,046 wind farms and 

Gamesa with 805. Therefore, for missing values, the power curve for the Vestas V90 

turbine (the most common in the database and for all countries) with 3MW of maximum 

power is assumed.  

3.4 Generation of the time series at different aggregation levels 

The wind power generation time series are calculated at each wind farm using the 30-

year HIRES wind speed hourly time series and the reconstructed wind farm database.  

The wind speeds of 30 years are converted into power using a power curve for each wind 

farm in the database that was operational in 2015. The wind power time series 

corresponding to 2015 are compared with actual generation time series provided by 

                                           

2
http://www.wind-

works.org/cms/index.php?id=85&tx_ttnews[tt_news]=3935&cHash=39424df20f9c961ee7cd158a85cabe36 

http://www.wind-works.org/cms/index.php?id=85&tx_ttnews%5btt_news%5d=3935&cHash=39424df20f9c961ee7cd158a85cabe36
http://www.wind-works.org/cms/index.php?id=85&tx_ttnews%5btt_news%5d=3935&cHash=39424df20f9c961ee7cd158a85cabe36
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TSOs in order to evaluate the systematic bias and normalise the time series without 

modifying the variability, as described in next section 4. 

The wind power generation time series are summed up at different aggregation levels. 

EMHIRES includes time series at country level and by bidding zone for the EU-28 and its 

neighbouring countries (Switzerland, Norway and Balkan regions, where there is any 

wind installed capacity). There are also special aggregations; for Ireland including the 

Republic of Ireland. For Greece the time series are released as continental Greece. 

For the countries with high installed offshore capacity, the time series are in principle 

released as onshore and offshore wind power generation time series, separately. 

Nevertheless, the wind farm database contains 85 offshore wind farms in 15 countries: 

Belgium, Denmark, Estonia, Finland, France, Germany, Ireland, Italy, Lithuania, the 

Netherlands, Norway, Portugal, Spain, Sweden and the United Kingdom. No separate 

time series are provided for those countries that currently only have 1 or 2 offshore wind 

farms. Offshore wind power generation time series are released for the following regions.  

 Belgium with 3 offshore wind farms registered in the database: NorthWind, 

BelWind and Thornton bank. 

 Denmark with16 offshore wind farms registered in the database: Vindeby-

Lolland, Tuno Knob, Horns Rev 1 and Horns Rev 2, Rønland, Frederikshavn, 

Nysted, Samso, Sprogo, Rodsand II, Avedøre Holme, Anholt. 

 Germany with13 wind farms registered in the database: Emden, Breitling, 

Hooksiel, Alpha Ventus, EnBW Baltic, Bard Offshore, Riffgat, Dan Tysk, Meerwind 

Ost, Meerwind Süd and Butendiek.  

 The Netherlands with 5 aggregated wind farms registered in the database: 

Irene Vorrink I, Irene Vorrink II, Lely, Egmond aan Zee and Prinses Amalia. 

 The United Kingdom has the largest amount of installed offshore wind capacity 

in Europe (5 GW at the end of 2015). There are 28 wind farms registered in the 

database: Blyth, North Hoyle, Scroby Sands, Kentish Flats, Barrow, Beatrice, 

Burbo Bank, Lynn and Inner Dowsing, Rhyl Flats, Gunfleet Sands 1, 2 and 3, 

Robin Rigg, Thanet, Wave Hub, Ormonde, Walney, Greater Gabbard 1 and 2, 

Sheringham Shoal, Demonstration, London Array, Teesside, Lincs, Fife Energy 

Park, West of Duddon Sands, Gwynt y Mor, Westermost Rough, Humber 

Gateway. 

In addition to time series at country and bidding zone levels; the dataset includes time 

series at NUTS 1 and NUTS 2 level except for the smallest countries and for countries 

with very small installed capacity (Estonia, Latvia, Lithuania, Czech Republic, Slovakia, 

Luxemburg and Cyprus). The country codes are summarized in the annex. 

3.5 Software used 

Different tools have been used for developing EMHIRES. The wind farm database 

(consisting of 103 variables, in a total of 16,171 records) and wind power generation 

time series published by TSOs are provided in the (xlsx) file format and can be easily 

manipulates using Microsoft Excel. 

The two meteorological datasets (NASA-MERRA and ECMWF) and the input files of the 

Global Wind Atlas can be considered as 'big-data'. They contain more than 10 variables, 

for 30 years at hourly time intervals and at different heights. In addition, the grids are at 

60 km x70 km resolution and in the case of the Global Wind Atlas at 250m x 250m. 

Those files are provided in the NetCDF format (Network Data Form) (Figure 8). They are 

processed using shell scripts, awk FORTRAN90, and the Climate Data Operators (CDO) 

on computers running the GNU/Linux operating system. 

The code to develop EMHIRES is also written in a Linux environment using mainly shell 

script and the R-software (v3.1.2) for the statistical analysis. Data visualization and the 

dissemination of results are done using ArcGIS v10.1, NC-view and the Panoply 

software. 
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Figure 8 Example of NetCDF meteorological files with four dimensions: latitude and 
longitude, height and time. 

The IT- infrastructure for EMHIRES consists of a single Linux machine (Virtual Machine) 

on which basic operations and tests calculations are performed. The final calculations are 

performed on the High Performance Computing clusters available at the JRC site in 

Petten, the Netherlands. 

The Virtual Machine is running under VMware, with four CPUs, each equivalent to an 

Intel Xeon E7-4860 and 2.27 GHz core with 8 GB of RAM and 120 GB of disk space. 

The HPC was commissioned in March 2013. It consists of 656 compute cores and 

5.116 TB of memory on the compute nodes, spanning 2 cracks. The EMHIRES dataset 

has been developed on two of its computer nodes, characterised by 2 Intel Xeon E5-

2630v3, 2.4GHz, 8-core processors (in total 16 cores per compute node and 64GB of 

DDR4 memory). Since the development of EMHIRES involves a high amount of data 

handling, disk storage of 50 TB plus 50 TB for archiving has been used. 
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4 Results and discussions 

In this section the wind power series, aggregated at country, by bidding zone and by 

NUTS 1 and NUTS 2 level, obtained with the EMHIRES approach are presented and 

discussed, with a special attention to the impact of wind speed spatial resolution on 

power generation at different aggregation levels. In case of countries with significant 

offshore wind farms have been validated as the total (offshore + onshore) and offshore 

wind power generation time series have been validated, separately.  

The first part of this section focuses on the validation of the wind power time series 

derived from different spatial resolutions of wind speed. MERRA and HIRES wind speed 

time series are compared with the ECMWF dataset at 100 m height for 2012-2015. The 

purpose is to assess the consistency of the downscaling applied to MERRA dataset 

(HIRES).  

The second part presents the assessment of the wind power dataset improvement 

(EMHIRES) using the higher spatial resolution wind resource (the HIRES wind speed time 

series). Different statistical performances show the significance, the type of errors and 

the skill of the synthetic time series at different regional levels with respect to the actual 

wind power generation for 2015. 

The last part consists of a description of the EMHIRES data format, and the platform 

where users can find the files and the terms of use of EMHIRES. 

4.1 Comparison of wind speed from different datasets  

This section presents the comparison of hourly wind speed time series at 100 m for 

2012-2015 between MERRA, HIRES and ECMWF datasets. 

The internal consistency of a dataset measures the reliability between similar results 

characterised of a set of test scores that relates to the amount of random error from the 

measurement process that might be embedded in the scores. The internal consistency of 

MERRA, HIRES and ECMWF datasets is assessed by the Pearson's correlation coefficient 

(R). The level of the correlation shows the linear relationships between them.  

To gauge the statistical significance of the datasets, the Student's t-test is applied to the 

statistical indicators. The t-test is based on the formulation of the null hypothesis which 

states that there is no effective difference between the observed sample mean and the 

hypothesized or stated dataset mean—i.e., that any measured difference is due only to 

chance. As the sample size increases (and thus, the degrees of freedom - the number of 

independent observations in the sample minus one) the t-distribution approaches "the 

bell shape" of the standard normal distribution. If the observed t-statistic is more 

extreme than the critical value determined by the appropriate reference distribution, the 

null hypothesis is rejected. The critical value depends on the significance level of the test 

(the probability of erroneously rejecting the null hypothesis) measured by the "p" value. 

That is, if the calculated t does not exceed these values, hence the null hypothesis 

cannot be rejected with 95 percent confidence (p < 0.05). 

For each wind farm in Europe, MERRA HIRES and ECWMF wind speed time series have 

been found to be highly correlated between each other with  Rmean = 0.88-0.89, Rminimum 

=  0.48-0.42 and Rmaximum = 1.0-1.0 once the results are aggregated at country and 

NUTS-2 level, respectively. In all cases, HIRES dataset shows a high consistency with 

the original data (MERRA) with a correlation greater than 0.95. According to these 

general results, it can be stated that the three datasets represent consistently the broad 

features of wind patterns on the European continental scale.  

Nevertheless, a deeper analysis shows how the details of this broad picture differ when 

prediction skills are closely compared. 

Averaging the correlation by country it is observed that in all cases the RMERRA-ECMWF is 

very similar with the RHIRES-ECMWF with a difference of R=0.02 (with a level of significance 
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p<0.05). This similarity can suggest that at this level of aggregation, the local effects 

due to the orography that both ECWMF and HIRES could introduce are smoothed.  

On the contrary, by regionalizing from country to NUTS-2, the differences between 

MERRA, ECMWF and HIRES start being significant. There are regions where the RHIGHRES-

ECMWF is higher; that means HIRES and ECWMF capture more variability than MERRA. 

These results occur in the 20% of the NUTS 2 regions, with the highest correlation of 

0.943 and with a difference of R = 0.20. The NUTS 2 with such differences in the 

correlations are located in Spain, Germany, Greece, Romania, Portugal, Norway and 

United Kingdom. It is worth to say that those countries have coastal sites and the wind 

speed is characterised by the sea-breeze interaction effects.  

Wind farm sites are extremely heterogeneous across Europe and this result could 

indicate that HIRES indeed introduces more variability in the dataset although its actual 

added value in properly asses the local wind effects could differ site by site. 

For this reason, site level data have been deeper analysed and in order to crosscheck the 

variability and the dispersion of the datasets. The measures of the dispersion are the 

quantities that characterize the spread of the data such as the range, inter-quantile 

range; the standard deviations and the distance to the mean are calculated. 

While low standard deviation indicates a dataset is closer to the mean and has lower 

variability; high standard deviation shows that data points are spread out over a wider 

range of values, the dataset is more dispersed. This behaviour can be observed indeed in 

the boxplots of Figure 10 and the scatter density plots of Figure 9.  

A visual comparison of the scatter density plots indicates as the variability is higher and 

more spread in the case of HIRES (wind speed corrected at site level) and in the ECWMF 

(wind speed extracted at 12 km x 12 km resolution) with respect to MERRA datasets (70 

km x 70 km, approximately). The scatter density plot between MERRA-HIRES (1) shows 

that the standard deviation of HIRES is more spread and the range is higher than in 

MERRA, the cloud is shifted upwards to x=y axis and distributed over the first quadrant. 

In the case of MERRA-ECMWF (2) the pattern is similar to MERRA-HIRES but lower. On 

the contrary, the comparison between HIRES and ECMWF (3) indicates that HIRES has 

slightly more spread than ECMWF but less than with MERRA. In this case, the cloud is 

closer to the x=y axis.  

The boxplots represents the average absolute deviation of the dataset, that is, the 

average of the absolute deviations from a central point is other statistical indicator of the 

variability. In this case, the central point is the median of the inter-quantile range. The 

boxplots show the difference of the mean between mean (HIRES-ECMWF) and mean (MERRA-

ECMWF): the negative values indicate that the difference between the mean of HIRES and 

ECMWF is lower than the mean between MERRA and ECMWF showing that HIRES and 

contributes with more variability than MERRA. It is also possible to identify that HIRES 

simulate higher winds than MERRA (negative values are most of the countries) since 

wind farms are typically built on sites with higher wind resources that are better capture 

thanks to the statistical downscaling procedure. 

The statistical results obtained so far are in line with the physical behaviour of the wind 

speed variability at different resolutions. The downscaling technique (HIRES) is applied 

to capture the effect of fine-scale forcing, in particular in areas characterised by fine 

spatial variability of features such as rugged topography and very diverse land surface 

conditions. In coarser resolutions (MERRA) these effects are smoothed and the variability 

of the wind speed is usually underestimated.  

A deeper analysis on wind speed improvements would need a dataset other than MERRA 

and HIRES to be appointed as benchmark, but in this report we have preferred not to 

use of the ECMWF dataset as benchmark since ECMWF is derived from an operational 

model and it is not possible to assume that has better quality than reanalysis data as far 

as wind patterns are represented.  
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Given that, and since 100 m wind speed observations are generally not available, the 

only alternative to assess the improvement of the synthetic time series is to compare 

with the actual wind power generation time series provided by the Transmission System 

Operators. 

 

Figure 9 Scatter density plots of the standard deviation of each hourly time series of 
2012-2015 for a) MERRA-HIRES, b) ECMWF-HIRES and c) MERRA-ECMWF 
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Figure 10 Boxplots of the difference between the mean of MERRA-ECMWF and HIRES-
ECMWF grouped by NUTS-1 
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4.2  Impact of wind speed spatial resolution on power generation 

at different aggregation levels 

The simulated wind power time series (EMHIRES) derived from the HIRES and MERRA 

wind speed datasets are validated with the actual wind power generation at different 

aggregation levels using time series and statistics provided by transmission system 

operators (TSO). Although the time series provided by the TSO are not complete (some 

of the countries are not available or there are also uncertainties associated to the time 

series, see section 2.3), they are used as measured values to compare MERRA and 

EMHIRES.  

The validation is firstly assessed by country and bidding zone level, both onshore and 

offshore. Then, time series are compared at NUTS 2 level with monthly and annual 

statistics, based on data availability. And finally, the robustness of the high resolution 

time series is evaluated against the uncertainty level introduced by aggregation of a 

number of wind farms. 

4.2.1  Statistical indicators 

The first validation is carried out using hourly time series by country and by bidding zone 

for 2015. Further, since the bidding zones are smaller regions than country areas (e.g. 

Norway, Sweden, Denmark and Italy) both aggregation levels are compared to assess 

the improvement of the HIRES-derived wind power with respect to the MERRA-derived 

wind power. The statistical performances are summarised in Table 3 and Table 4.  

Note that the differences are a source of uncertainty from the method applied to convert 

wind speed into wind power generation but also because of the errors in the TSO data as 

shown in Table 2.  

The fractional bias (FB) is commonly used for the validation; it measures the mean bias 

and indicates only systematic error which leads to an underestimation or overestimation 

of the measured values. It is based on a linear scale and the systematic bias refers to 

the arithmetic difference between the prediction and the observation. The values range 

between -2.0 (extreme underprediction) to +2.0 (extreme overprediction). The results 

indicate that there are no significant differences between the FB associated to MERRA 

and HIRES by country and by bidding zone. The synthetic time series (MERRA and 

HIRES) tend to underestimate some countries in other are overestimated but in both 

datasets the systematic error has a similar level and pattern. 

In this analysis, the Pearson’s linear correlation coefficient is also calculated to assess 

the internal consistency of the datasets. In all cases the coefficient indicates that both 

datasets have good internal consistency since the R>0.75 except for Cyprus (R=0.55). 

The wind power time series obtained from HIRES show a better correlation than MERRA 

in Belgium, Germany, Denmark, Estonia, Finland, France, Hungary, Lithuania, Latvia, 

Netherlands and Portugal and for the bidding zones of Norway (NO4), Sweden (SW1), 

Italy (SUD, SICI) and Denmark (DK2) the HIRES also show an improvement in the 

internal consistency. 

However, a good correlation is only necessary but not sufficient to evaluate the quality of 

a simulation. Therefore, the mean error (ME), the difference between standard 

deviations (SD) and the root mean square error (RMSE) are computed to gauge the 

simulation’s accuracy. Indeed, high values of RMSE indicate a high level of non-

systematic (i.e., random) discrepancy between the simulations and the observations. In 

addition to that, it is assessed and compared the ability of MERRA and HIRES to 

reproduce the actual wind power generation time series. For that, the statistical 

performances need to accomplish the following criteria defined by [34]: (1) the synthetic 

and real standard deviations are similar; (2) the RMSE are lower than the standard 

deviation and (3) the unbiased RMSE (RMSEub) which represents the accuracy of the 

MERRA and HIRES is also lower than the standard deviation. 
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 FB =
∑ (Xiobs − Yisimu)i

0.5 ∗ ∑ (Xiobs + Yisimu)i

 (16) 

 ME =  
Xi−Yi

n
  (17) 

 RMSE =  √
∑ (Xi−Yi)2n

i=1

n
  (18) 

 𝑅𝑀𝑆𝐸𝑢𝑏 =  √
∑ ((𝑋𝑖−𝑋̅)−(𝑌𝑖−𝑌̅))2𝑛

𝑖=1

𝑛
  (19) 

On the bases of these criteria, the results (presented in Table 5) indicate that both 

datasets, MERRA and EMHIRES, are well characterised by high internal consistency, they 

are accurate and have the skill of the statistics to be good synthetic time series, and that 

both datasets have very similar performance. 

Nevertheless, the added value provided by the better wind speeds spatial resolutions of 

HIRES, becomes evident when observing the type of the errors and that most of the 

countries and bidding zones experience an improvement in EMHIRES with respect to 

MERRA data. Over the 25 countries and 16 bidding zones analysed, all of them except 

for Cyprus, Czech Republic, Spain, Poland, Switzerland, and Italy-NORD bidding zone 

and Italy-SARD bidding zone have better internal consistency, or they are more accurate 

when EMHIRES series are considered with differences in the standard deviations, the ME, 

MSE, RMSE or RMSE improving with respect to MERRA.  

Moreover, although EMHIRES is more variable and dispersed than MERRA (Figure 9), it 

has lower differences with respect with the actual values. In the cases EMHIRES time 

series don't improve with respect to MERRA time series, the errors and the quality of the 

time series are similar comparing with the TSO data. They have very similar results and 

in no case EMHIRES visibly worsen the time series with respect to the TSO-time series. 
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Table 4 Statistical performance of EMHIRES in 2015 using MERRA (first table) and HIRES (second table) dataset by country; green colour 
indicates the cases which HIRES improves with respect to MERRA 

MERRA 2015 

COUNTRY FB R SD TSO SD MERRA Delta SD ME MSE RMSE RMSEub 

AT -0.020 0.904 524.542 598.331 -73.789 11.567 65697.112 256.314 256.053 

BE 0.113 0.937 259.638 224.658 34.980 -29.834 9438.977 97.154 92.462 

BG 1.138 0.759 141.445 39.745 101.700 -108.687 24292.288 155.860 111.781 

CY 0.709 0.436 19.413 11.332 8.081 -10.688 419.812 20.489 17.724 

CZ -0.039 0.920 55.849 75.805 -19.955 2.709 1060.815 32.570 32.459 

DE -0.039 0.971 6687.221 6824.144 -136.923 315.765 2718445.078 1648.771 1619.338 

DK 0.001 0.952 808.988 760.422 48.565 -0.524 61210.508 247.408 247.407 

EE -0.021 0.913 55.209 56.807 -1.598 1.548 553.216 23.521 23.470 

ES -0.064 0.916 3234.007 4647.364 -1413.357 364.868 4657755.621 2158.183 2127.118 

FI -0.083 0.929 170.375 230.419 -60.044 20.427 9596.317 97.961 95.808 

FR -0.062 0.952 1516.446 1803.049 -286.603 141.977 365350.483 604.442 587.531 

GR 0.082 0.816 304.577 342.580 -38.003 -31.797 40827.701 202.059 199.541 

HR 0.322 0.788 79.815 87.462 -7.647 -24.949 3635.836 60.298 54.894 

HU 0.288 0.897 77.485 61.996 15.489 -19.580 1610.869 40.136 35.183 

IE 0.330 0.949 544.196 412.904 59.291 -215.108 86903.214 294.078 201.068 

IT NA NA NA 1461.443 NA NA NA NA NA 

LT 0.213 0.923 76.294 61.686 14.608 -15.721 1203.095 34.686 30.932 

LU NA NA NA 8.464 NA NA NA NA NA 

LV -0.004 0.905 11.479 10.064 1.415 0.050 23.952 4.894 4.894 

MT NA NA NA NA NA NA NA NA NA 

NL 0.415 0.949 743.259 486.083 257.176 -333.943 220064.470 469.110 332.425 

PL -0.002 0.967 988.485 1014.189 -25.704 2.714 66533.153 257.940 257.931 

PT 0.199 0.824 985.643 972.427 13.216 -234.306 392742.957 626.692 581.243 
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RO 0.278 0.838 671.968 539.686 132.282 -183.912 169105.197 411.224 367.985 

SE -0.083 0.866 1070.392 1685.995 -615.603 164.485 868442.411 931.903 917.686 

SI -0.458 NA 0.376 15.881 -15.505 0.101 0.220 0.469 2.526 

SK NA NA NA NA NA NA NA NA NA 

UK -0.055 0.952 1641.242 1772.790 131.452 147.367 291903.137 540.317 540.007 

CH -0.597 0.581 5.921 13.528 -7.606 5.105 151.807 12.321 11.214 

NO NA NA NA 146.316 NA NA NA NA NA 

EMHIRES 2015 

COUNTRY FB R SD TSO SD EMHIRES Delta SD ME MSE RMSE RMSEub 

AT 0.042 0.869 524.542 551.486 -26.945 -23.241 77128.080 277.719 276.745 

BE 0.014 0.947 259.638 284.106 -24.468 -3.970 8462.950 91.994 91.911 

BG 1.147 0.733 141.445 41.025 100.420 -109.222 24359.884 156.077 111.586 

CY 0.872 0.427 19.413 10.227 9.186 -12.395 463.727 21.534 17.783 

CZ -0.129 0.904 55.849 91.455 -35.605 9.373 2279.732 47.747 46.820 

DE -0.149 0.972 6687.221 9009.699 -2322.477 1264.949 10048056.536 3169.867 2907.804 

DK -0.069 0.957 808.988 894.194 -85.206 72.502 75409.522 274.608 264.864 

EE -0.052 0.920 55.209 61.263 -6.054 3.813 593.795 24.368 24.068 

ES -0.069 0.913 3234.007 4721.685 -1487.678 393.357 5035397.749 2243.969 2209.224 

FI -0.027 0.944 170.375 191.459 -21.083 6.485 4166.354 64.547 64.221 

FR -0.076 0.959 1516.446 1908.122 -391.676 176.804 423205.598 650.543 626.056 

GR 0.076 0.813 304.577 342.959 -38.382 -29.684 41352.686 203.354 201.176 

HR 0.322 0.814 79.815 82.715 -2.899 -24.949 3087.804 55.568 49.652 

HU 0.288 0.876 77.485 67.011 10.474 -19.560 1781.545 42.208 37.542 

IE 0.33 0.951 544.196 417.304 127.891 -215.121 84922.906 291.677 196.468 

IT NA NA NA 1388.701 NA NA NA NA NA 

LT 0.214 0.926 76.294 66.765 9.529 -15.814 1105.297 33.246 29.262 

LU NA NA NA 11.252 NA NA NA NA NA 

LV -0.004 0.921 11.479 11.903 -0.425 0.050 21.880 4.678 4.677 
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MT NA NA NA NA NA NA NA NA NA 

NL 0.417 0.960 743.259 519.334 223.926 -335.311 199063.276 446.165 297.441 

PL -0.073 0.965 988.485 1202.907 -214.422 91.853 138273.770 371.852 360.332 

PT 0.110 0.846 985.643 1108.553 -122.910 -135.265 370750.149 608.893 593.678 

RO 0.280 0.836 671.968 570.567 101.401 -185.109 170056.188 412.379 368.715 

SE -0.093 0.885 1070.392 1649.465 -579.073 184.156 760495.511 872.064 852.750 

SI -0.579 NA 0.376 12.044 -11.668 0.138 0.263 0.513 1.973 

SK NA NA NA NA NA NA NA NA NA 

UK 0.0288 0.947 16410.242 14852.727 29.515 -67.606 7350363.546 857.050 530.932 

CH -0.598 0.545 5.921 14.019 -8.097 5.112 168.060 12.964 11.914 

NO NA NA NA 124.174 NA NA NA NA NA 
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Table 5 Statistical performance of EMHIRES in 2015 using MERRA dataset by bidding zone; the green underlined indicates the cases 
which HIRES improves with respect to MERRA 

MERRA 2015 

Bidding zone FB R SD TSO SD MERRA Delta SD ME MSE RMSE RMSEub 

NO1 NA NA NA 0.258 NA NA NA NA NA 

NO2 -0.071 0.865 63.342 94.345 -31.003 6.539 2547.095 50.469 50.048 

NO3 0.816 0.556 92.330 76.020 16.310 -63.451 10540.006 102.665 80.710 

NO4 0.188 0.682 39.722 39.570 0.151 -10.784 1084.710 32.935 31.127 

NO5 1.980 0.552 6.981 0.047 6.934 -7.727 108.074 10.396 6.955 

SW1 0.147 0.755 125.280 183.608 -58.329 -22.184 15099.146 122.879 120.868 

SW2 -0.121 0.859 403.387 646.844 -243.457 72.870 138019.911 371.510 364.319 

SW3 -0.274 0.886 464.958 1042.507 -577.548 219.714 476194.836 690.069 654.410 

SW4 -0.053 0.952 341.954 416.827 -74.873 25.843 19246.082 138.730 136.479 

CNOR 0.231 0.660 22.947 29.000 -6.053 -4.831 512.704 22.643 22.122 

NORD 0.237 0.592 5.885 6.250 -0.366 -1.284 31.778 5.637 5.489 

SARD 0.270 0.711 190.754 214.751 -23.998 -40.443 25867.336 160.833 155.665 

SUD -0.140 0.795 692.715 1229.679 -536.964 133.218 656086.483 809.992 798.962 

CSUD -0.079 0.768 273.677 444.336 -170.659 22.844 86024.785 293.300 292.409 

SICI -0.078 0.837 312.417 461.454 -149.038 24.550 69774.549 264.149 263.005 

DK1 0.032 0.948 692.582 628.604 63.978 -27.402 50523.155 224.774 223.097 

DK2 -0.017 0.940 133.755 128.797 4.958 2.678 2103.306 45.862 45.784 

EMHIRES 2015 

Bidding zone FB R SD TSO SD EMHIRES Delta SD ME MSE RMSE RMSEub 

NO1 NA NA NA 0.543 NA NA NA NA NA 

NO2 -0.024 0.848 63.342 81.501 -18.159 2.184 1861.581 43.146 43.094 

NO3 0.865 0.551 92.330 65.329 27.001 -66.108 10519.286 102.564 78.416 

NO4 0.229 0.696 39.722 32.643 7.079 -12.900 996.852 31.573 28.821 
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NO5 1.968 0.543 6.981 0.058 6.923 -7.703 107.630 10.375 6.949 

SW1 0.290 0.762 125.280 141.753 -16.474 -41.064 10371.179 101.839 93.201 

SW2 -0.077 0.856 403.387 576.009 -172.622 45.263 99517.476 315.464 312.205 

SW3 -0.194 0.910 464.958 813.475 -348.516 148.492 204143.690 451.823 426.993 

SW4 -0.032 0.938 341.954 409.506 -67.552 15.277 21808.952 147.679 147.020 

CNOR 0.258 0.594 22.947 30.582 -7.635 -5.333 656.053 25.614 25.052 

NORD 0.184 0.594 5.885 7.057 -1.173 -1.018 36.138 6.011 5.925 

SARD 0.281 0.708 190.754 215.964 -25.210 -41.933 26476.884 162.717 157.221 

SUD -0.094 0.801 692.715 1073.946 -381.231 86.915 449546.564 670.482 664.825 

CSUD 0.137 0.758 273.677 319.409 -45.732 -35.380 45646.646 213.651 210.701 

SICI -0.088 0.849 312.417 464.277 -151.860 27.758 67678.337 260.151 258.665 

DK1 -0.026 0.948 692.582 740.647 -48.065 22.746 55816.926 236.256 235.159 

DK2 -0.099 0.945 133.755 152.700 -18.945 15.860 2854.196 53.425 51.016 
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4.2.2 Duration curves and boxplots 

Wind power duration curves and boxplots for MERRA, EMHIRES and TSO data are shown 

in Figure 11, Figure 12, Figure 13 and Figure 14. It is observed that for the countries 

and bidding zones where the EMHIRES statistics are better than MERRA, the cumulative 

distributions are closer to the TSO data, mainly at the highest wind power values. An 

example of the statistically significance (Student's t-test) between MERRA and EMHIRES 

with TSO is indicated in Table 6. The table includes for each pair of datasets the t 

indicator and the p.value, showing that in all cases the datasets follows a Student's t-

distribution under the null hypothesis.  

In general, there is overestimation in the MERRA and EMHIRES time series due to the 

installed capacity considered for the power conversion, dated at the end of 2015. The 

difference may also be due to curtailment and maintenances of the wind farms and 

because of the uncertainty associated of the methodology. It also worth reminding that, 

ENTSO-E time series contain inconsistencies as described in section 2.  

Although ECWMF dataset contains data from 2012-2015 and it is not suitable for 

EMHIRES (since the purpose is to release 30 years of wind power generation) ECMWF 

wind speed of 2015 has been also converted into wind power to be compared with the 

EMHIRES and MERRA statistical performance. The parameters evaluated show similar 

skills in the three datasets. As mentioned in the previous section, ECMWF introduces 

more variability and dispersion than MERRA and the EMHIRES more than the rest all of 

them, maintaining similar correlations and types of errors with respect the TSO-time 

series.  

Table 6 Example of the Student's t-test summary for EMHIRES and TSO datasets 

Country t p.value Country t p.value 

AT -2.86 4.27E-03 HU -20.47 5.24E-92 

BE 0.07 9.42E-01 IE -0.06 9.55E-01 

BG -10.28 1.59E-24 LT -13.55 1.24E-41 

CY -1.11 0.269079 LV 0.26 7.97E-01 

CZ 8.59 9.96E-18 NL -0.02 9.88E-01 

DE 11.25 2.93E-29 PL 5.61 2.10E-08 

DK -0.7 0.482248 PT -8.53 1.52E-17 

EE 4.4 1.10E-05 RO -17.86 1.11E-70 

ES 6.46 1.08E-10 SE 9.92 4.19E-23 

FI 2.32 2.06E-02 SI 15.44 5.42E-53 

FR 6.77 1.36E-11 SK 71.57 0 

GR -6.12 9.83E-10 UK -10.36 4.49E-25 

HR -20.32 1.04E-90 CH 30.74 1.08E-199 
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Figure 11 EMHIRES (red), MERRA (blue) and ENTSO-E (black) wind power duration curves for 2015 by country 
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Figure 12 EMHIRES (red), MERRA (blue) and ENTSO-E (grey) boxplots for 2015 by country 
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Figure 13 EMHIRES (red), MERRA (blue) and TSO (black) derived wind power duration curves for 2015 by bidding zone 
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Figure 14 EMHIRES (red), MERRA (blue) and TSO (black) derived wind power boxplots for 2015 by bidding zone 
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4.2.3 Time series and ramping rates 

The overall statistical performance shows good results in all datasets, which means that 

they are able to reproduce the wind power generation with similar errors. However, 

EMHIRES incorporates higher variability improving the wind power time series.  

Apart from the statistical analysis shown so far, the direct comparison of modelled and 

measured power curves can provide useful information on the suitability of synthetic 

time series in reproducing actual data. For instance, Figure 16 represents the wind 

power generation time series of the three datasets (ENTSO-E, MERRA and EMHIRES) for 

Denmark. It is observed that MERRA is not able to reproduce the wind power generation 

peaks as well as EMHIRES. The difference results from the spatial resolutions of the wind 

speed; the coarser resolution is not able to reproduce the variability and local effects of 

the wind speed. Those effects are smoothed and the main consequence is the 

underestimation of the wind power peaks.  

This behaviour is more pronounced when the time series are more spatially 

disaggregated; for example, by bidding zones in Denmark (DK1 and DK2). In those 

cases the improvement of the EMHIRES is more significant (Figure 17 and Figure 18). 

Figure 19, Figure 20 and Figure 21 are other examples of this behaviour. Although in 

other cases EMHIRES overestimates the peaks of wind power generation, the statistical 

analysis indicate that the contribution to the uncertainty is lower than the improvement 

of the results.  

On the physical basis, the results show that the increased power from EMHIRES may be 

the overall effect of wind turbines being sited in favourable locations with speed up due 

to orographic or roughness effects, which are captured by Global Wind Atlas predicted 

wind climate data, but not by MERRA. Also increased variability can be captured because 

these effects are locally a function of wind direction. This effect can be observed at 

country and by bidding zone aggregation levels. 

In order to assess the quality of EMHIRES in capturing the sudden increase or decrease 

of power characterised by large positive or negative hour by hour differences, the ramp 

rate distribution is calculated. The following plots (Figure 15) show the frequency 

distribution of the difference between the power production at hour (h) and at (h-1), 

namely (WPt–(t-1)) in the countries with significant installed capacity (Spain, Denmark, 

United Kingdom and Germany).  

The histograms represent the TSO data, divided into 100 intervals in order to take into 

account the minimum and maximum power difference. The distribution curves 

correspond to EMHIRES (red) and MERRA (blue). The range of the plot is ±10000 MWh 

in order to compare the ramping rates peaks of all countries considered. In general, the 

distribution of MERRA is steeper in the "bell" and less prolonged in the "edges" of the 

distribution than EMHIRES. This reflects the underestimation of the wind speed due to 

smoothing, i.e. not taking into account the local effects at the sites of the wind farms. It 

can be seen that the ramping rates of EMHIRES are better representing the TSO data. 

In the case of Denmark, the most frequent ramping rates occur in an interval of a 

WPt-(t-1) -600 to 600 MWh (95% confidence interval). Both cases, MERRA and EMHIRES 

are able to capture the negative ramping rates in the 99.5% of the hours. In the case of 

large sudden positive increases (out of the 95% interval), EMHIRES improves with 

respect to MERRA. MERRA is not able to capture differences greater than 600 MWh while 

EMHIRES is able to reproduce 4 ramps that occurred in the range of 600 and 1200 MWh. 

During the 2015, there were 2 hours with a positive increases of 1200 MWh and 

1800 MWh respectively that neither dataset is able to capture.  

In the case of Germany and Spain EMHIRES and MERRA slightly underestimate the 

ramping rates with respect to the TSO. In Germany, the 95% confidence interval of 

ramping rates occur mainly between -1000 to 2000 MWh, and the datasets capture the 

sudden changes in a 92% of the hours. For Spain, the 95% confidence interval is 
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between -2000 to 2000 MWh and EMHIRES captures the ramping rated in 97% of the 

cases. There is one positive maximum of 8000 MWh in Germany and 10000 MWh in 

Spain and one negative maximum of -6000 MWh and -9000 MWh in Germany and Spain, 

respectively. Neither EMHIRES nor MERRA are able to capture them.  

EMHIRES shows a noticeable improvement with respect to MERRA in the United 

Kingdom. The 95% confidence interval is between -940 to 1300 MWh redistributed into 

three different subintervals. That is, there are 340 hours with sudden increase between -

940 to -340 MWh and EMHIRES captures 50% of the hours compared with 35% captured 

by MERRA. There are 7278 ramping rates between -340 to 200 MWh and EMHIRES 

overestimates the changes in 8% of the cases while MERRA overestimates in 15%. 

Finally, there are 14 large changes between 700 and 1300 MWh. While MERRA is not 

able to capture any of these ramps, EMHIRES captures 7 cases. According to the TSO 

data, the positive and negative maximums occurred once at 6000MWh and at -

5000 MWh, this time neither EMHIRES nor MERRA are able to capture them  

In summary, EMHIRES shows an improvement with respect to MERRA in the 95% 

confidence interval of ramping rates during 2015. In addition, EMHIRES also improves in 

capturing the large negative sudden increases of wind power out of the 95% interval. 

However, the limitation of the weather derived wind power time series appears when 

trying to capture the maximum of the ramping rates (1 and 100 percentiles of the 

ramping rates distributions). EMHIRES (and consequently MERRA) are not able to 

reproduce some extreme situations since the methodology does not take into account 

effects of curtailment, outages such as maintenances and grid losses and sudden 

disruptions.  
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Figure 15 Ramp rate distributions in 2015 for Denmark, Germany, Spain and United 

Kingdom. TSO data are represented with the grey histograms, EMHIRES (red) and 
MERRA (blue) are the distribution density curves. 
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Figure 16 Comparison of the hourly wind power time series for Denmark in 2015 
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Figure 17 Comparison of the hourly wind power time series for Denmark by bidding zone (DK1) 
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Figure 18 Comparison of the hourly wind power time series for Denmark by bidding zone (DK2) 
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Figure 19 Comparison of the hourly wind power time series for January-April 2015 for Germany 
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Figure 20 Comparison of the hourly wind power time series for Belgium 2015 
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Figure 21 Comparison of the hourly wind power time series for Sweden 2015 
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4.2.4 Offshore power 

The HIRES downscaling technique it is not applied to the offshore wind farms because of 

lack of orography and roughness and the offshore wind power generation time series are 

directly produced with MERRA primary data. Off shore time series are released 

separately for the countries with high installed capacity (Belgium, Denmark, Germany, 

Netherlands and United Kingdom). The rest of the time series for countries with 1 or 2 

offshore wind farms are added to the onshore wind power generation time series.  

The validation for the MERRA generated offshore time series also shows the skill of the 

statistics (Table 7 and Table 8). The bias in the statistics of the offshore is greater than 

in the onshore. This could be explained because of the sum up of the time series 

(aggregation level) is too detailed and in those cases the effects not taken into account 

for the wind power simulation are exacerbated (e.g. the wake effect and the multi-

turbine effect). I.e. in the case of Belgium, there are 3 wind farms aggregated; Denmark 

has 16 wind farms, Germany 13 wind farms, Netherlands 5 wind farms and United 

Kingdom 28 wind farms. In addition, in the latter, the local climate of the locations is 

very diverse and it is not very well capture by the MERRA data.  

Table 7 Basic statistics for the offshore actual generation provided by ENTSO-E 

ENTSOE basic statistics (MWh) 

Country Min 1st q Median Mean 3rd q Max NA 

BE 0 75 243 294 534 689 96 

DK 0 216 533 548 853 123 0 

DE 0 279 661 931 1434 2947 48 

NL 0 57 139 159 281 363 3723 

UK 0 495 1248 1447 2257 4038 0 

 

Table 8 Statistical performance of the offshore wind power generation time series 
derived from MERRA data 

NASA MERRA time series basic statistics for 2015 (MWh) 

Country FB R SD-obs SD-simu ME MSE RMSE RMSEub 

BE -0.0048 0.931 234.331 224.9316 1.443 7308.218 85.48811 85.48 

DK 0.0016 0.972 359.125 355.4183 -0.879 32635.73 180.6536 180.65 

DE 0.118 0.924 803.983 762.3073 -103.74 105589.6 324.945 307.948 

NL -0.05607 0.881 113.117 133.2724 9.2105 3871.889 62.2245 62.32 

UK 0.0002 0.229 1091.429 958.5054 -0.425 1629044 1276.34 1276.34 

4.2.5 Capacity factors 

Additional comparison of the EMHIRES dataset with the TSO time series is done by 

calculating the total Full Load Hours (FLH); that is, the ratio between the sums of the 

energy produced (GWh) and the maximum possible generation (installed capacity(GW) 

*8760h (GWh)) per country. The Table below includes the FLH coefficients for EMHIRES 

and TSO data showing that both values are hovering the 25%. 
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Table 9 Capacity factors /full load hours for each country given by EMHIREs and TSO 

data. 

Country TSO (MW)*8760h FLH TSO FLH EMHIRES 

Austria 1981 0.22 0.27 

Belgium 2172 0.28 0.12 

Bulgaria 701 0.23 0.16 

Croatia 384 0.23 0.17 

Cyprus 155 0.17 0.13 

Czech 277 0.23 0.28 

Denmark 5082 0.31 0.20 

Estonia 301 0.26 0.25 

Finland 1082 0.24 0.22 

France 10312 0.23 0.23 

Germany 43429 0.19 0.21 

Greece 1775 0.24 0.21 

Hungary 0328 0.23 0.17 

Ireland 2400 0.31 0.31 

Italy 8750 0.19 0.15 

Latvia 070 0.23 0.17 

Lithuania 290 0.31 0.23 

Luxembourg 60 0.18 0.13 

Netherlands 3641 0.22 0.26 

Norway 860 0.33 0.24 

Poland 5186 0.22 0.25 

Portugal 4826 0.26 0.24 

Romania 2923 0.27 0.19 

Slovakia 3 0.22 0.16 

Slovenia 3 0.22 0.27 

Spain 23003 0.23 0.25 

Sweden 3029 0.62 0.69 

Switzerland 60 0.25 0.18 

UK 13563 0.20 0.18 

4.2.6 Regional statistics 

Currently, at NUTS 2 aggregation levels, the only statistics available are the annual total 

wind power production for Spain, France and Finland. Table 10 presents the comparison 

of the annual wind power generation by NUTS 2 for the three countries. It is observed 

that both MERRA and HIRES the total production is similar to the annual statistics except 

for three NUTS2 in Spain (ES53, ES70, and ES13), three in France (FR10, FR23, FR25) 

and one in Finland (FI20). 

Although in the comparison between MERRA, HIRES and ECMWF the results were highly 

correlated between the three datasets, it would be necessary to validate the data at 

regional scale with actual hourly time series. Therefore, the validation by NUTS 2 region 

will continue once the data is released by the national TSO.  
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Table 10 Comparison of the annual total wind power generation at NUTS 2 level for 

Spain, France and Finland 

Country Region defined NUTS2 code 
Annual 
(GWh) 

MERRA 
(GWh) HIRES (GWh) 

ES Andalucía ES61 5781.6 8540.9 10115.0 

ES Aragón ES24 4127.4 4251.8 4454.4 

ES Asturias ES12 889.4 847.2 654.9 

ES Comunidad Valenciana ES52 2172.8 2123.6 1761.9 

ES Cantabria ES13 58.1 290.9 211.4 

ES Castilla La Mancha ES42 6940.1 6739.3 5988.9 

ES Castilla León ES41 10288.5 14665.2 12770.4 

ES Cataluña ES51 2542.2 2601.7 2501.0 

ES Galicia ES11 7217.5 4707.2 6991.3 

ES La Rioja ES23 903.1 837.2 859.7 

ES Murcia ES62 412.8 503.7 448.9 

ES Navarra ES22 2551.2 3134.3 3477.2 

ES País Vasco ES21 293.9 170.2 161.5 

FR Auvergne-Rhône-Alpes FR72,FR71 799.0 818.8 1065.7 

FR 

Bourgogne-Franche-
Comté / Bourgogne 
Franche-Comte FR26,FR43 695.4 330.6 330.7 

FR Bretagne FR52 1651.0 2712.5 2442.2 

FR Centre-Val de Loire FR51, FR24 1927.6 3174.3 3261.1 

FR Corse FR83 24.2 7.1 16.8 

FR 

Grand-Est / Alsace 
Champagne-Ardenne 
Lorraine FR41, FR42,FR21 5165.7 4031.9 3693.0 

FR 
Hauts-de-France / Nord-
Pas-De-Calais- Picardie FR30, FR22 4966.2 5484.3 5212.4 

FR Ile-de-France FR10 52.7 150.1 133.3 

FR Normandie FR23,FR25 1259.7 4470.5 4261.1 

FR 

Nouvelle-Aquitaine / 
Aquitania, Limousin, 
Poitou-Charentes FR61, FR63, FR53 924.0 1120.6 1183.7 

FR 
Occitanie / Languedoc-
Roussillon Midi Pyrenees FR81, FR62 2318.0 1516.3 2332.0 

FR Pays de la Loire FR51 1223.4 1676.2 1757.5 

FR 
Provence-Alpes-Côte 
d'Azur FR82 105.4 91.6 125.3 

FI Uusimaa FI1B 11.0 14.8 11.0 

FI 

Varsinais-Suomi, Kanta-
Häme, Päijät-Häme, 
Kymenlaakso, Etelä-Karjala FI1C 154.0 278.3 247.1 

FI 

Etelä-Savo, Pohjois-Savo, 
Pohjois-Karjala, Keski-
Pohjanmaa, Pohjois-
Pohjanmaa, Kainuu, Lappi FI1D 1504.0 1086.6 1042.6 

FI 
Keski-Suomi, Etelä-
Pohjanmaa, Pohjanmaa FI19 592.0 615.1 604.0 

FI Ahvenanmaa FI20 65.0 245.9 189.0 
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4.3 Description of the files generated and platform used 

The first version of EMHIRES dataset releases four different files about the wind power 

generation hourly time series during 30 years (1986-2015), taking into account the 

existing wind fleet at the end of 2015, for each country (onshore and offshore), bidding 

zone and by NUTS 1 and NUTS 2 region:  

 EMHIRES_WINDPOWER_ONSHORE_COUNTRY_30yr.txt 

 EMHIRES_WINDPOWER_OFFSHORE_COUNTRY_30yr.txt 

 EMHIRES_WINDPOWER_BIDDINGZONE_30yr.txt 

 EMHIRES_WINDPOWER_NUTS1_30yr.txt 

 EMHIRES_WINDPOWER_NUTS2_30yr.txt 

The time series are released as hourly capacity factors time series, taking into account 

the installed power by country, NUTS1, NUTS2, and bidding zone included in the 

annexes. The installed capacity (MW) by country has been extracted from ENTSO-E 

annual statistical factsheet; the installed capacity (MW) at NUTS1, NUTS 2 and NUTS 3 

has been calculated using the wind farm database and normalized according to the 

relationship between the ENTSO-E data and the wind farm database by country. 

A detailed description of the data obtained will be performed in future reports and 

publication. In the present report, some basic statistics of the wind power generation for 

the 30 years by country have been computed and are reported in Table 11 

Table 11 Basic statistics of the wind power generation time series for the 30 years by 
country ONSHORE and OFFSHORE in MWh 

Country 25th percentile Median Mean 75th percentile Maximum Standard deviation 

AT 85.1 334.2 570.0 896.0 2104.4 597.9 

BE 40.9 143.7 233.8 360.9 848.3 240.1 

BE OFFSHORE 56 236.2 279.4 527.8 601 226.6 

BG 28.2 79.4 123.1 175.6 629.6 126.5 

CH 1.2 5.5 11.7 16.4 60.4 14.7 

CY 7.8 15.8 22.6 30.0 157.5 21.7 

CZ 11.1 39.4 69.0 99.4 281.5 76.7 

DE 1924.5 5673.1 9137.6 13319.4 42829.1 9507.4 

DE OFFSHORE 52 158 176 309 369 130 

DK 214.9 690.7 964.1 1540.9 3106.1 878.0 

DK OFFSHORE 173 443 493 801 1077 348 

EE 17.4 56.0 73.2 121.8 204.2 62.5 

ES 2679.4 4826.8 6405.9 8545.0 23025.3 5157.6 

FI 67.9 166.0 211.9 323.4 686.6 171.5 

FR 845.3 1756.0 2419.4 3471.9 8697.9 2034.4 

GR 105.5 272.5 384.3 591.3 1541.7 341.8 

HR 7.0 31.3 68.7 102.7 365.0 83.0 

HU 5.0 30.1 57.4 87.4 264.3 67.1 

IE 157.5 433.1 519.9 861.6 1260.7 399.8 

IT 316.9 884.4 1464.2 2143.4 7578.3 1519.6 

LT 10.7 41.0 64.1 101.3 236.3 64.5 

LU 0.6 3.0 7.8 10.4 48.5 10.8 

LV 1.5 6.6 10.9 17.6 38.9 11.2 

NL 115.2 421.0 572.8 965.1 1584.7 510.7 
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Country 25th percentile Median Mean 75th percentile Maximum Standard deviation 

NL OFFSHORE 27 118 152 271 377 133 

NO 102.2 184.4 201.1 291.0 497.1 118.7 

PL 323.2 833.7 1241.8 1847.5 4694.0 1170.1 

PT 386.5 788.8 1112.5 1554.3 4610.8 961.8 

RO 171.1 401.6 606.9 857.3 2914.6 585.0 

SE 545.0 1282.8 1788.0 2648.9 6024.8 1559.6 

SI 0.0 0.1 0.4 0.5 3.1 0.7 

SK 0.0 0.2 0.5 0.8 2.6 0.6 

UK OFFSHORE 539 1205 1369 2157 3048 934.7 

 UK 685.3 1525.0 1869.0 2848.2 5261.0 1397.7 

 

Terms of use:  

This report describes the methodology used to generate EMHIRES and the approach 

followed to validate the data against the Transmission System Operators time series. It 

has been described the associate cascade of uncertainties. Therefore, the responsibility 

how to use, examine the quality of the data for the user's objectives and treat the data 

available relies on the user.  

If you use EMHIRES data in publications, please acknowledge the Knowledge 

Management Unit, Directorate C Energy, Transport and Climate, Joint Research Centre, 

European Commission for the dissemination of EMHIRES.  

How to cite the use of EMHIRES dataset:  

GONZALEZ APARICIO Iratxe; ZUCKER Andreas; CARERI Francesco; MONFORTI Fabio; 

HULD Thomas; BADGER Jake; EMHIRES dataset. Part I: Wind power generation 

European Meteorological derived HIgh resolution RES generation time series for present 

and future scenarios; EUR 28171 EN; 10.2790/831549 

Link to download the dataset: 

https://setis.ec.europa.eu/publications/jrc-setis-reports/emhires-dataset-part-i-wind-

power-generation 

 

  

https://setis.ec.europa.eu/publications/jrc-setis-reports/emhires-dataset-part-i-wind-power-generation
https://setis.ec.europa.eu/publications/jrc-setis-reports/emhires-dataset-part-i-wind-power-generation
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5 Conclusions and further steps 

EMHIRES is the first publically available European wind power generation dataset derived 

from meteorological sources that is available up to NUTS-2 level. It was generated 

applying an innovative methodology capturing local geographical information to generate 

meteorologically derived wind power time series at high temporal and spatial resolution. 

This allows for a better understanding of the wind resource at the precise location of 

wind farms.  

The validation of EMHIRES against power system statistics and time series published by 

Transmission System Operators show a clear improvement in the performance with 

respect to time series not applying an accurate spatial downscaling. 

EMHIRES is able to capture the variability of wind energy, in particular peaks and ramps, 

in a much more accurate way than previous meteorologically derived time series. The 

limitation of the weather derived wind power time series appears when trying to capture 

the maximum of the ramping rates. EMHIRES (and consequently other meteorological 

derived time series) are not able to reproduce some extreme situations since the 

methodology does not take into account effects of curtailment, outages such as 

maintenances and grid losses or network incidences. However, using EMHIRES for power 

system analysis will increase the accuracy of generation adequacy assessments, 

renewable energy integration studies and market studies for flexibility technologies such 

as storage. 

This is the first part of EMHIRES, covering wind energy production. Further datasets and 

publications are planned on PV energy and temperature corrected power demand. The 

EMHIRES PV will be similar to EMHIRES wind, providing hourly PV time series at country, 

bidding zone, NUTS1 and NUTS 2 levels. It will be produced based on the DG-JRC PV-

GIS platform [35].  

PV-GIS is an open source online tool to estimate the solar electricity production of a 

photovoltaic (PV) system. Currently, it gives the annual output power of solar 

photovoltaic panels. As a photovoltaic Geographical Information System it proposes a 

google map application that makes it easy to use. The area covered by the calculator is 

Europe Asia and Africa. This application calculates the monthly and yearly potential 

electricity generation E [kWh] of a Photovoltaic system with defined modules, tilt and 

orientation.  

The next step is to couple the EMHIRES wind power and PV with PV GIS platform to 

construct the whole high quality intermittent RES dataset. 

All datasets can be reviewed, updated and readapted to new situations in the power 

system (e.g. the commissioning of new installations) as well as to future RES-E 

deployment scenarios. 
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Appendix 

Country 
ENTSO-E installed capacity 

(MW) 

Austria 1981 

Belgium 2172 

Bulgaria 701 

Croatia 384 

Cyprus 155 

Czech 277 

Denmark 5082 

Estonia 301 

Finland 1082 

France 10312 

Germany 43429 

Greece 1775 

Hungary 328 

Ireland 2400 

Italy 8750 

Latvia 70 

Lithuania 290 

Luxembourg 60 

Netherlands 3641 

Norway 860 

Poland 5186 

Portugal 4826 

Romania 2923 

Slovakia 3 

Slovenia 3 

Spain 23003 

Sweden 3029 

Switzerland 60 

UK 13563 

 

BIDDING ZONE Installed capacity (MW) 

NO1 4.1 

NO2 157.2 

NO3 305.7 

NO4 267.8 

NO5 110.0 

DK1 4281.6 

DK2 1029.4 
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SW1 350.8 

SW2 807.5 

SW3 838.9 

SW4 1474.1 

NORD 177.3 

SARD 1043.1 

SICI 2784.2 

SUD 3656.0 

CNOR 128.0 

CSUD 1288.6 

 

NUTS1 Installed capacity (MW) 

AT1 1836.0 

AT2 77.0 

AT3 40.0 

BE2 1403.0 

BE3 769.0 

BG3 698.0 

BG4 3.0 

CH0 60.0 

CY0 155.0 

CZ0 277.0 

DE1 869.0 

DE2 1462.7 

DE3 39.9 

DE4 6407.5 

DE5 180.0 

DE6 96.5 

DE7 1244.9 

DE8 3143.2 

DE9 9684.0 

DEA 4279.6 

DEB 2399.4 

DEC 209.6 

DED 1682.3 

DEE 5565.2 

DEF 4660.2 

DEG 1505.7 

DK0 5082.1 

EE0 301.0 

ES1 3956.2 
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ES2 3440.0 

ES3 148.0 

ES4 9310.9 

ES5 2413.9 

ES6 3547.7 

ES7 187.5 

FI1 1109.8 

FI2 33.0 

FR1 77.0 

FR2 5225.1 

FR3 590.2 

FR4 843.2 

FR5 1993.7 

FR6 506.9 

FR7 419.7 

FR8 657.0 

GR1 146.2 

GR2 386.4 

GR3 22.9 

GR4 1148.7 

HR0 384.0 

HU1 1.3 

HU2 304.2 

HU3 22.8 

IE0 2400.9 

ITC 139.1 

ITF 4712.0 

ITG 3689.4 

ITH 31.8 

ITI 177.8 

LT00 290.0 

LU00 60.0 

LV00 70.0 

MK00 37.0 

NL1 743.0 

NL2 1241.9 

NL3 1503.6 

NL4 152.8 

NO0 860.8 

PL1 372.5 

PL2 1.7 



 

60 

 

PL3 614.8 

PL4 2177.0 

PL5 387.3 

PL6 1633.9 

PT1 4737.1 

PT2 44.2 

PT3 45.0 

RO1 653.4 

RO2 1786.6 

RO3 335.3 

RO4 147.8 

SE1 281.8 

SE2 1286.4 

SE3 1461.1 

SI0 3.0 

SK 3.0 

UKC 451.4 

UKD 1227.1 

UKE 918.1 

UKF 765.2 

UKG 0.5 

UKH 1425.9 

UKI 17.0 

UKJ 1125.9 

UKK 237.6 

UKL 1475.9 

UKM 5319.9 

UKN 598.1 

 

NUTS2 code Installed capacity (MW) 

AT11 941.3 

AT12 915.4 

AT13 7.0 

AT21 0.5 

AT22 76.6 

AT31 39.1 

AT32 1.2 

BE21 116.2 

BE22 107.9 

BE23 173.3 
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BE24 21.5 

BE25 984.1 

BE31 39.7 

BE32 334.5 

BE33 91.0 

BE34 88.1 

BE35 215.7 

BG31 2.3 

BG32 0.0 

BG33 314.7 

BG34 381.0 

BG42 3.0 

CH01 9.3 

CH02 40.3 

CH05 3.0 

CH06 7.5 

CY00 155.0 

CZ02 5.1 

CZ03 0.7 

CZ04 146.5 

CZ05 47.4 

CZ06 21.1 

CZ07 49.5 

CZ08 6.7 

DE11 422.3 

DE12 141.4 

DE13 194.0 

DE14 111.2 

DE21 129.9 

DE22 60.9 

DE23 210.5 

DE24 330.4 

DE25 185.2 

DE26 375.3 

DE27 170.5 

DE30 39.9 

DE40 6407.5 

DE50 180.2 

DE60 96.5 

DE71 385.2 

DE72 384.8 
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DE73 474.9 

DE80 3143.2 

DE91 1165.8 

DE92 1723.0 

DE93 2607.2 

DE94 4187.9 

DEA1 458.0 

DEA2 988.6 

DEA3 1087.9 

DEA4 999.9 

DEA5 745.1 

DEB1 1035.7 

DEB2 771.9 

DEB3 591.8 

DEC0 209.6 

DED2 889.8 

DED4 476.8 

DED5 315.8 

DEE0 5565.2 

DEF0 4660.2 

DEG0 1505.7 

DK01 141.7 

DK02 843.4 

DK03 1519.1 

DK04 1788.0 

DK05 789.9 

EE00 301.0 

ES11 3404.0 

ES12 513.9 

ES13 38.3 

ES21 153.3 

ES22 969.3 

ES23 475.6 

ES24 1841.2 

ES30 148.0 

ES41 5620.9 

ES42 3599.4 

ES43 90.7 

ES51 1220.0 

ES52 1189.3 

ES53 4.5 
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ES61 3284.9 

ES62 262.7 

ES70 187.5 

FI19 286.7 

FI1B 15.2 

FI1C 109.6 

FI1D 698.4 

FI20 33.3 

FR10 77.0 

FR21 1811.0 

FR22 1585.7 

FR23 269.5 

FR24 930.5 

FR25 283.5 

FR26 344.9 

FR30 590.2 

FR41 796.5 

FR42 13.7 

FR43 33.0 

FR51 616.4 

FR52 894.2 

FR53 483.0 

FR61 1.2 

FR62 455.2 

FR63 50.6 

FR71 171.5 

FR72 248.2 

FR81 587.4 

FR82 49.9 

FR83 19.8 

GR11 146.2 

GR12 33.3 

GR13 3.6 

GR14 33.9 

GR21 16.7 

GR22 7.2 

GR23 27.4 

GR24 272.0 

GR25 63.1 

GR30 22.9 

GR41 864.6 
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GR42 215.2 

GR43 69.0 

HR03 384.0 

HU10 1.3 

HU21 117.9 

HU22 155.3 

HU23 31.0 

HU31 1.9 

HU32 2.0 

HU33 18.9 

IE01 961.8 

IE02 1439.1 

ITC1 21.8 

ITC3 33.9 

ITC4 83.3 

ITF1 234.7 

ITF2 431.7 

ITF3 953.1 

ITF4 1655.8 

ITF5 521.7 

ITF6 915.0 

ITG1 2683.9 

ITG2 1005.5 

ITH1 3.2 

ITH3 1.3 

ITH5 27.3 

ITI1 117.2 

ITI2 1.4 

ITI3 4.8 

ITI4 54.4 

LT00 290.0 

LU00 60.0 

LV00 70.0 

MK00 37.0 

NL11 549.6 

NL12 182.1 

NL13 11.4 

NL21 29.9 

NL22 60.5 

NL23 1151.5 

NL31 10.5 
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NL32 696.5 

NL33 386.5 

NL34 410.1 

NL41 135.5 

NL42 17.3 

NO02 3.7 

NO03 0.5 

NO04 160.2 

NO05 292.2 

NO06 224.9 

NO07 179.2 

PL11 211.9 

PL12 160.6 

PL21 0.5 

PL22 1.3 

PL31 26.5 

PL32 463.1 

PL33 2.0 

PL34 123.2 

PL41 614.4 

PL42 1363.0 

PL43 199.7 

PL51 295.5 

PL52 91.8 

PL61 385.8 

PL62 352.8 

PL63 895.3 

PT11 1506.3 

PT15 210.1 

PT16 2747.1 

PT17 156.1 

PT18 117.5 

PT20 44.2 

PT30 45.2 

RO11 98.3 

RO12 555.1 

RO21 77.8 

RO22 1708.8 

RO31 221.4 

RO32 113.8 

RO41 0.2 
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RO42 147.6 

SE11 61.2 

SE12 220.6 

SE21 417.9 

SE22 410.9 

SE23 457.6 

SE31 485.4 

SE32 510.4 

SE33 465.3 

SI01 0.5 

SI02 2.5 

SK02 3.0 

UKC1 226.6 

UKC2 224.8 

UKD1 963.1 

UKD3 0.5 

UKD4 158.8 

UKD7 105.4 

UKE1 749.9 

UKE2 42.5 

UKE3 116.4 

UKE4 9.4 

UKF1 43.7 

UKF2 135.9 

UKF3 585.7 

UKG2 0.5 

UKH1 1154.2 

UKH2 22.1 

UKH3 249.6 

UKI1 2.4 

UKI2 14.5 

UKJ1 16.3 

UKJ2 0.9 

UKJ3 0.6 

UKJ4 1108.1 

UKK1 35.4 

UKK2 3.1 

UKK3 114.0 

UKK4 85.1 

UKL1 1347.3 

UKL2 128.6 
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UKM2 1143.1 

UKM3 2182.1 

UKM5 407.6 

UKM6 1587.1 

UKN0 598.1 
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