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Foreword about the Low Carbon Energy Observatory 

The LCEO is an internal European Commission Administrative Arrangement being 

executed by the Joint Research Centre for Directorate General Research and Innovation. 

It aims to provide top-class data, analysis and intelligence on developments in low 

carbon energy supply technologies. Its reports give a neutral assessment on the state of 

the art, identification of development trends and market barriers, as well as best 

practices regarding use private and public funds and policy measures. The LCEO started 

in April 2015 and runs to 2020.  

Which technologies are covered? 

• Wind energy 

• Photovoltaics 

• Solar thermal electricity 

• Solar thermal heating and cooling 

• Ocean energy 

• Geothermal energy 

• Hydropower 

• Heat and power from biomass 

• Carbon capture, utilisation and storage 

• Sustainable advanced biofuels 

• Battery storage 

• Advanced alternative fuels 

How is the analysis done? 

JRC experts use a broad range of sources to ensure a robust analysis. This includes data 

and results from EU-funded projects, from selected international, national and regional 

projects and from patents filings. External experts may also be contacted on specific 

topics.  The project also uses the JRC-EU-TIMES energy system model to explore the 

impact of technology and market developments on future scenarios up to 2050.  

What are the main outputs? 

The project produces the following report series: 

 Technology Development Reports for each technology sector 

 Technology Market Reports for each technology sector 

 Future and Emerging Technology Reports (as well as the FET Database).  

How to access the reports 

Commission staff can access all the internal LCEO reports on the Connected LCEO page. 

Public reports are available from the Publications Office, the EU Science Hub and the 

SETIS website. 

  

https://connected.cnect.cec.eu.int/groups/low-carbon-energy-observatory
https://ec.europa.eu/jrc/en/publications-list
https://setis.ec.europa.eu/


 

 LCEO Advanced Alternative Fuels Technology Market Report 2018 

 

Acknowledgements 

The authors would like to thank the LBST team who carried out the market study, on 

which this report is based.  

The authors would also wish to thank JRC colleagues who contributed to and/or reviewed 

this report, namely Nigel Taylor and Aliki Georgakaki, and our DG RTD colleagues 

Thomas Schleker and Maria Georgiadou for their review and valuable advice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 LCEO Advanced Alternative Fuels Technology Market Report 2018 

 

Abstract 

This Technology Market Report for Advanced Alternative Fuels has been carried out on 

behalf of the Commission by the Germany-based contractor LBST. Their deliverables 

under the contract were a report and a database, the report is included in the Annex. 

The JRC team in charge of the technology development assessment of Advanced 

Alternative Fuels has subsequently summarised the findings of the LBST investigations 

herewith. Moreover, the results of the JRC-EU-Times model concerning the Market 

Outlook of Advanced Alternative Fuels are briefly presented 
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1 Introduction 

 

 Scope and basis of the report 1.1

The aim of the present deliverable in the framework of the LCEO is to present a market 

report on Advanced Alternative Fuels. The report notes both recent developments in this 

area thus providing an up-to-date snapshot of their market status, and it explores the 

likely longer term perspectives (to 2030) for these technologies. Part of their analysis 

provides an idea of how the market status of these various technologies are in the EU 

compared to the rest of the world.  

 

 Introduction to subcontracted study 1.2

The company LBST was selected as a subcontractor to provide a complete picture of the 

recent market status and development trends in the advanced alternative fuels 

technologies sector, both in Europe and globally. The main tasks LBST has undertaken 

were to:  

 Provide a concise description of recent market trends and technology deployment 

including for the pathways specified in Table 1, both in Europe and globally 

 Compile a database in the form of an Excel file listing significant major active 

companies and industrial players 

 Compile a database in the form of an Excel file listing significant demonstration 

projects currently running or in development, and of the first-of-kind commercial 

systems for the sub-technology pathways identified in Table 1. 

 Provide a concise assessment of the market outlook for future developments for 

the same technology pathways, both in Europe and globally. The outlook time 

horizon was for the near and medium term (i.e. up to 2030), and included a 

consideration of barriers to future technology development and market uptake 

 Provide a concise assessment of the qualitative and quantitative information on 

existing support mechanisms/incentives and support policies aimed at promoting 

both R&D and corporate investments for advanced biofuels (and by sub-

technology whenever possible), both in the EU and globally 

 

 Technologies considered 1.3

The technologies considered in this work are summarised in Table 1. A detailed 

description of the majority of these individual technologies can be found in the associated 

Technology Development Report on Advanced Alternative Fuels; LCEO deliverable 

D2.2.14 (2018). Also chapter 2 of the LBST report and its associated technology 

overview sub-sections gives more details on the technologies (LBST, 2019).  

It is outside the scope of this work to look in detail at H2, particularly its use in fuel cells 

etc. This report looks at the use of H2 (and CO2) as feedstocks to make other fuels. H2 is 

of course an important fuel in its own right, and interested parties are directed to the 

extensive ‘Fuel Cells and Hydrogen’ LCEO TDR, D2.1.13 and the large “Fuel Cells & 

Hydrogen Joint Undertaking” resource (FCHJU, 2019) for further information.  
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Table 1 Alternative fuels conversion pathways and sub-technologies: source LBST (2019) 

 

In addition to the above fuels considered by LBST, an overview of the status of 

ammonia-based fuels, and of their possible market position, if any, was requested. 

Ammonia as a fuel is of interest as its carbon free (containing nitrogen and hydrogen), 

has an established transport network and can be used directly as a fuel (with some 

technical issues) (Valera-Medina et al, 2018). It is chiefly made from natural gas. Of the 

~ 150 million tonnes of ammonia made each year, approximately 83% goes to make 

fertilizers for agriculture (Alkusayer et al, 2015). 

Technologies 

1. Power to fuel (electrofuels) 

a. H2 production using renewable electricity (However dedicated hydrogen 

production out of scope) 

b. Alkaline electrolysis 

c. Solid-oxide electrolysis cell (SOEC) 

d. PEM (Proton exchange membrane) electrolysis 

e. Water-splitting/artificial photosynthesis 

f. Fuels (methanol, synthetic petrol or diesel, methane) 

2. CO2 based fuels using, recycled carbon fuels 

a. Waste high concentration CO2 from renewable sources 

b. Amine-based post combustion capture 

3. Microbial fermentation 

a. Industrial off-gases processed by bacteria into ethanol 

b. Mixture of sewage gas and natural gas processed by bacteria into ethanol 
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2 Technology Trends and Prospects 

 

 Supportive legislation for advanced alternative fuels 2.1

At present, it could be said that corresponding incentives and support policies in most 

cases do not directly address advanced alternative fuels but rather provide a general 

framework for reducing the emissions of the transport sector. The most important piece 

of legislation at EU level, the recast of the Renewable Energy Directive (EU) 2018/2001 

(RED II), extending the current Renewable Energy Directive from 2009 and Fuel Quality 

Directive beyond 2020, targets a share of renewable energy within the final consumption 

of energy in the transport sector of at least 14% by 2030. In the RED II, the electrofuels 

addressed in this report are included in the so-called “renewable liquid and gaseous 

transport fuels of non-biological origin”, as their energy content is derived from 

renewable sources other than biomass. Their renewable nature depends on the source of 

the electricity used for their production and Article 27 of the RED II outlines how this is to 

be taken into account. The waste-stream based fuels considered here are covered by the 

“recycled carbon fuels” category of the RED II. Both renewable liquid and gaseous 

transport fuels of non-biological origin and recycled carbon fuels are explicitly covered in 

their contribution towards the renewable energy goals of the transport sector. However, 

while renewable liquid and gaseous transport fuels of non-biological origin shall be taken 

into account by Member States in calculating the renewable energy share in transport, 

this is only optional for recycled carbon fuels (see RED II Articles 25 and 27). Outside the 

EU territory, there are not significant legislative initiatives supporting advanced 

alternative fuels. One exception is China which is promoting electric mobility for road 

transport under the scheme for so called New Energy Vehicles. 

 

 Technology, Market and Commercial Readiness of different 2.2

pathways  

A summary of the Technology, Market and Commercial Readiness Level of the different 

pathways of different advanced alternative fuels is given in Table 2. The pathways are 

classified according to the fuel produced in 6 categories: Power-to-Liquid (PtL), Power-to-

methanol (PtCH3OH), Power-to-methane (PtCH4), Artificial photosynthesis, Bio-EtOH, CO2 

capture. It should be noted that CO2 is not a fuel production pathway in itself, but it was 

highlighted as it’s such an important part of the other pathways that intend to use 

captured CO2. The same principle applies in the case of artificial photosynthesis, unless 

H2 is considered as a final fuel. 

According to the findings of the present study, the Technology Readiness Level of the 

advanced alternative fuels included varies from 2 (where the technology concept is 

formulated) to 9 (actual system proven in operational environment). Respectively, 

Market Readiness Level and Commercial Readiness Level range from 1 to 6 proving that 

most of these technologies are not yet commercial and mature enough to penetrate the 

market. An explanation of the different Technology, Market and Commercial Readiness 

Levels and their alignment can be found in Table 3. It is noteworthy that despite the 

technological maturity of some of the technologies, the commercial readiness is still low. 

For example, the ‘methanol route with high temperature electrolysis’ pathway presents a 

TRL 9 whereas its CRL is at ≥2. This finding proves that commercial deployment does not 

depend only on the technological maturity of a given technology but also on the market 

structure, the investments on new plants, the existence of supportive legislation and the 

potential financial incentives or financial instruments.  
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Table 2 Technology, market and commercial readiness of different pathways (Source: LBST, 2019) 

Fuel Pathway TRL MRL CRL 

PtL 
Fischer-Tropsch route with low temperature 

electrolysis  

6 

(RWGS1) 

3 1 

Fischer-Tropsch route with high temperature 
electrolysis 

6 
(SOEC2, 

RWGS) 

3 1 

Methanol route with low temperature electrolysis 6-9 
(DAC3) 

≥5 ≥2 

Methanol route with high temperature electrolysis 6 
(SOEC4) 

3 1 

PtCH3OH 
Methanol synthesis with low temperature 
electrolysis 

6-9 
(DAC) 

≥5 ≥2 

Methanol synthesis with high temperature 
electrolysis 

6 
(SOEC) 

3 1 

PtCH4 
Catalyt. methanation with low temperature 
electrolysis 

6-9 
(DAC) 

≥5 ≥2 

Catalyt. methanation with high temperature 

electrolysis 

6 

(SOEC) 

3 1 

Biolog. methanation with low temperature 
electrolysis 

8 
(bioreact

or) 

5 2 

Biolog. methanation with high temperature 
electrolysis 

6 
(SOEC) 

3 1 

Artificial 

Photo-
synthesis. 

Hydrogen from photo-catalysis (PEC) 2-5 ≤2 ≤1 

Direct methanation using PEM electrolyser 2 - - 

Bio-EtOH* 
Microbial fermentation of industrial off-gases 9 6 3 

Microbial fermentation of sewage gases and 
methane 

n.d.a. n.d.a. n.d.a. 

CO2 

capture 

CO2 extraction from biogas upgrading plants  9 6 6 

CO2 extraction from flue gas with MEA5  9 6 6 

CO2 extraction from flue gas with K2CO3 + 
electrodialysis  

4 1 – 

CO2 extraction from flue gas with 
adsorption/desorption  

6 3 1 

CO2 extraction from air with 

absorption/electrodialysis  

4 1 - 

CO2 extraction from air with absorption/calcination  5 2 - 

CO2 extraction from air with adsorption/desorption  6 3 1 

CO2 liquefaction and storage  9 6 6 

 

* Bio-EtOH refers to bio-ethanol, however strictly speaking the fermentation of industrial off-gases 

that are fossil in origin does not produce a biofuel, whereas the fermentation of other gases that 
could include a fraction of sewage gas would at least be partially bio. 

 

 

 

                                           
1 Reverse water gas shift 
2 Solid oxide electrolysis cell 
3 Direct air capture 
4 Solid oxide electrolysis cell 
5 Mono-ethanolamine 
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Ammonia overview 

The production and storage of ammonia are both fully commercial, with a current annual 

market size of over 150 million tonnes across the globe (Alkusayer et al, 2015). However 

this production comes from fossil feedstocks, and its end use is principally in fertilizer 

production. 

Alternative methods for its production, and its use as a fuel, are not as developed. Care 

would have to be applied with respect to both its handling and storage6, as it is caustic, 

hazardous, and toxic if inhaled. With regards to an alternative production method, 

researchers found a cyanobacteria-based process was optimal (Angeles et al, 2018). In a 

significant review into the science and technology of ammonia combustion, Kobayashi et 

al (2019) note technical issues (namely low flammability and high NOx production) which 

must be overcome in order for its direct use as a fuel to grow. Afif et al (2016) in a 

comprehensive review of the use of ammonia in next-generation fuel cells stated that it 

is promising, but such technology is not yet at a commercially ready stage. 

 

 

 

  

                                           
6 FAO, Safety operation of anhydrous ammonia equipment. http://www.fao.org/3/y1936e/y1936e0f.htm 
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Table 3 Technology, Market and Commercial Readiness Levels (Source: LBST, 2019) 

Description TRL 
 

TRL MRL CRL 

Basic principles observed  1 – – 

Technology concept formulated  2 – – 

Experimental proof of concept  3 – – 

Technology validated in lab  4 1 – 

Technology validated in relevant environment (industrially relevant 
environment in the case of key enabling technologies)  

5 2 – 

Technology demonstrated in relevant environment (industrially relevant 
environment in the case of key enabling technologies)  

6 3 – 

System prototype demonstration in operational environment  7 4 1 

System complete and qualified  8 5 2 

Actual system proven in operational environment (competitive manufacturing 
in the case of key enabling technologies; or in space)  

9 6 3 

Multiple commercial applications becoming evident locally although still 
subsidised. Verifiable data on technical and financial performance in the public 
domain driving interest from variety of debt and equity sources however still 
requiring government support. Regulatory challenges being addressed in 
multiple jurisdictions.  

– – 4 

Market competition driving widespread deployment in context of long-term 
policy settings. Competition emerging across all areas of supply chain with 
commoditisation of key components and financial products occurring.  

– – 5 

‘Bankable’ grade asset class driven by same criteria as other mature energy 
technologies. Considered as a ‘bankable’ grade asset class with known 

standards and performance expectations. Market and technology risks not 
driving investment decisions. Proponent capability, pricing and other typical 

market forces driving uptake.  

– – 6 

 

 JRC Overview: R&D investment and patenting activity 2.3

 

Advanced Alternative Fuels are still in their infancy relative to other fuels such as fossil or 

biofuels. Therefore, as far as we know no (sufficiently) detailed information on R&D and 

patenting activities specific to these fuel production pathways is available. JRC searches 

(Fiorini et al, 2017, Pasimeni et al, 2018) of patents showed several entities with projects 

involving synthetic fuels had registered patents, but these were very small in number. 

Indeed the particular subset of the JRC’s work which had been investigated had been 

looking more at biofuel patents as opposed to those for advanced alternative fuels. There 

are certainly a large number of hydrogen patents. While their focus is unlikely to be on 

the use of H2 for further fuel synthesis, they show the large scale of interest in H2 in 

general. And while H2 itself is outside the main focus of this work, it’s likely any advances 

in technologies surrounding this “feedstock” - for e.g. in its production or storage - could 

be expected to positively impact H2-using advanced alternative fuel pathways. 

R&D and patenting activities on CO2 capture are discussed in the 2018 LCEO Technology 

Market Report D4.2.9 dedicated to Carbon Capture, Utilisation and Storage (LCEO, 

2018b).   
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3 Market Overview 

 EU position in the global market 3.1

As already mentioned, most of the technologies assessed in the frame of this report are 

at demonstration scale and present at the moment a very low CRL. Therefore, an 

established market does not really exist (with the exception of the purification of biogas 

to make bio-methane) and isn’t likely to be developed in the near future (see also 

subchapter 4.3 of the present document). Only 3 pathways for the capture of CO2, 

namely ‘extraction from biogas upgrading plants’, ‘extraction from flue gas with MEA’ and 

‘CO2 liquefaction and storage’, have a CRL6. In 2017 the total capacity of upgrading 

plants including pressurized water scrubbing (PWS) and membrane technologies in the 

EU amounted to about 170,000 Nm³ of methane per hour. Of these, about 70,000 Nm³ 

of methane per hour is available from technologies which can supply CO2 with a 

sufficiently high purity for further fuel synthesis. Some alternative fuel concepts are 

based on environmental CO2 concentrations but these are lab-scale or pilot-plant scale. 

Concerning power to methane, almost all plants are installed in the EU (11 plants with a 

capacity of about 7MW of CH4 by the end 2018). Including plants under construction, 

planned, and announced plants the capacity could reach more than 16 MW of CH4. 

Typically the CO2 used in these plants is obtained from biogas. Concerning power-to-

methanol, there are only a few existing and projected installations in the EU (which is a 

pioneer in the field) with a total capacity of almost 800 kW. As far as power-to-liquid 

plants for the production of petrol, kerosene, and diesel are concerned, the current 

capacity in the EU is 150 kW. 
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4 Market Outlook 

 Barriers  4.1

Advanced alternative fuels will be competing with other low or zero emission options in 

transport on availability and total cost basis. The cost of electrofuels is mainly driven by 

the underlying cost of electricity. In all European countries, various taxes and levies 

constitute a significant share of the electricity price. As a result, the question of which of 

these taxes and levies apply in what way when using renewable electricity to produce 

electrofuels is a decisive factor for the cost and resulting competitiveness of an advanced 

fuel (LBST, 2019). Electricity pricing may be lower if grid electricity is used, but this 

would have a higher GHGi than renewable electricity – and thus the resulting alternative 

fuel would have a high GHGi – therefore it would likely be impractical. 

 

 Conversion technology supply from EU to global markets 4.2

 

The following section aims to briefly describe the likelihood of conversion technology 

supply from the EU to global markets, i.e. to try and put into context the level of EU 

leadership on advanced alternative fuel production technologies compared to worldwide 

players.  

The vast majority of advanced alternative fuel plants found and discussed in this report 

are power-to-x or electrofuel plants (LBST, 2019), and most are situated in Europe 

(Schmidt et al, 2018). LBST (2019) also acknowledge that for electrofuels in Europe, 

prototype deployment is certainly happening, but outside Europe activities are considered 

to be still in “their infancy”. Of the various electrofuel categories, power-to-gas projects 

are the most prevalent, and these too are again mainly EU based (with some projects in 

North America) (Thema et al, 2019). Reviewing the database provided by LBST on major 

companies or industrial players actively investigating advanced alternative fuel 

production (which includes a consideration of plants), the dominance of EU–based 

companies can be seen; of the 219 projects, 88% are in the EU, 7% in non-EU Europe 

and 5% in North America. These EU companies are developing and working with their 

own technologies, i.e. technologies created in-house, as opposed to relying on outside 

expertise. So while the EU appears well positioned to market its conversion technologies 

to areas outside the EU, it’s worth noting the principle issue hindering the market 

development of electrofuels according to LBST is in fact not technical, but due to costs - 

mainly the underlying cost of the electricity. And that is an issue somewhat outside of the 

control of the fuel conversion technology developers. 

 

 JRC-EU-Times Model results 4.3

The JRC-EU-TIMES model offers a tool for assessing the possible impact of technology 

and cost developments. It represents the energy system of the EU28 plus Switzerland, 

Iceland and Norway, with each country constituting one region of the model. It simulates 

a series of 9 consecutive time periods from 2005 to 2060, with results reported for 2020, 

2030, 2040 and 2050.  

The model was run with three global storylines:  

• Baseline: continuation of current trends; it represents a ‘business as usual’ world 

in which no additional efforts are taken on stabilising the atmospheric concentration of 

GHGs; only 48 % CO2 emissions reduction by 2050. 
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• Diversified: usage of all known supply, efficiency and mitigation options 

(including CCS and new nuclear plants); CO2 emissions reduction target of 80 % is 

achieved by 2050. 

• ProRES: same as diversified scenario in terms of CO2 emissions reduction target 

by 2050 but there are no new nuclear plants and no underground storage of CO2 (no 

CCS). 

For the decarbonised scenarios (Diversified and ProRES), sensitivities have been 

designed with different assumptions on the technology learning, the use of resources and 

policies (see Figure 1). Detailed information on the features of the model and all 

scenarios can be found in deliverable report D4.7 prepared by the JRC-EU-TIMES 

modelling team (Nijs et al., 2018).  

In summary, sensitivities on technology learning assume lower or higher learning rates in 

LowLR and HighLR scenarios respectively and the achievement of SET Plan targets in the 

Res4_SET scenario. Two more sensitivities include more optimistic assumptions for the 

CAPEX of Direct Air Capturing (Div4_DAC and Res5_DAC scenarios). 

In terms of resources, sensitivities have been run assuming cheaper fossil fuels 

(CheapFossil scenario) or a higher forestry biomass potential (HighForest scenario).  

At the policies level, two specific sensitivities restrict CCUs: in the Div6_NoCC_InPower 

scenario, carbon capture is not deployed in the power sector, while in the Res8_NoCCU 

scenario, the utilisation of CO2 is restricted on top of the geological storage restriction 

that was already in place in the ProRES scenarios. There is also a near zero carbon 

energy variant of the ProRES scenario that assumes a long-term decarbonisation target 

of 95% below 1990 levels in 2050. 

 

 

Figure 1 Overview of all scenarios and sensitivities (Source: Nijs et al., 2018) 

 

Modelling results in terms of capacity installed and investments for the production of 

advanced alternative fuels used in transport from 2020 to 2050 are shown in Figure 2 

and Figure 3 for the global storylines scenarios and sensitivities scenarios. 

Figure 2 shows the installed capacity (in PJ) for the production of advanced alternative 

fuels per year (on the left axis) and the cumulative capacities (on the right axis). It is 

obvious from the graphs presented that these technologies are still in their infancy but 

they are expected to grow in the mid future. According to the model results, the installed 

cumulative capacity is expected to increase from near 0 PJ in 2020 to almost 70 PJ in 

2050 in the baseline scenario. This increasing tendency is more intense in the diversified 
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scenario (from 0 PJ in 2020 to 140 PJ in 2050). All sensitivities scenarios show the same 

trend (see upper part of Figure 2). 

Concerning the ProRES scenarios, the cumulative capacities for the production of 

advanced alternative fuels increase substantially from 2020 to 2050, reaching more than 

1,000 PJ in 2050, most of it coming from the increased production capacity of hydrogen 

plants. Specifically, in the case of the NearZeroCarbon scenario, the cumulative capacity 

of hydrogen production plants is estimated to be over 1500 PJ.  

Figure 3 shows the model results in terms of investments from 2020 to 2050 (in billion 

Euro) for the global storylines scenarios and sensitivities scenarios. The amount of 

investment shows the same trend as the installed capacities commented above. As 

expected the lion’s share in the investments concerns hydrogen production plants.   

However, it is worth noticing that all capacities and investments reported are related to 

technologies that produce diesel, kerosene or methane. Those e-fuels contain carbon 

from CO2 that was captured. The hydrogen production only covers the feedstock to make 

those fuels and does not include hydrogen production for direct uses. Hydrogenation and 

methanation are reported separately and include the investments to convert that 

hydrogen and the CO2 to e-fuels. A large share of the investments is for the production of 

the hydrogen feedstock. This hydrogen is produced with electrolysers that need to have a 

sufficiently large capacity to transform most of the surplus or dedicated power from 

variable renewable sources. In contrast, for the conversion of that hydrogen into e-fuels, 

much less capacity is required because these processes can operate with much higher full 

load hours. 
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Figure 2 Installed capacities per year and cumulative capacities (in PJ) of advanced alternative 
fuels technologies in EU for different scenarios; hydrogen production as feedstock to make 
methane, diesel or kerosene (Source: JRC-EU-TIMES modelling results) 
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Figure 3 Total investment (billion Euro/year) in advanced alternative fuels technologies in EU for 
different scenarios; hydrogen production as feedstock to make methane, diesel or kerosene 
(Source: JRC-EU-TIMES modelling results) 
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5 Summary, Conclusions, Recommendations 

In summary, JRC agrees with the results of the LBST (2019) study, and applauds its 

quality and level of detail. Regarding market status, it has been seen that most of the 

technologies assessed in this report are still at the demonstration scale presently and as 

such have a very low CRL. Furthermore, an established market doesn’t really exist and is 

not likely to be developed at least in the near future, unless a significant drop in 

electricity prices can be achieved. Some sub-pathways (i.e. for the capture of CO2) are 

seen to have a have TRL of 6, but of course it must be remembered these are really 

providing part of a feedstock for final fuel production chains, as opposed to producing 

final fuels themselves. LBST (2019) note that while electrofuel production is seeing 

prototype deployment in Europe, activities outside Europe are still in their infancy.  

Regarding policy support, LBST (2019) highlighted that in the EU, both renewable liquid 

and gaseous transport fuels of non-biological origin (for the purposes of the fuels studied 

in this report are principally comprised of electrofuels) and recycled carbon fuels (mainly 

microbial fermentation) are explicitly covered in their contribution towards the renewable 

energy goals of the transport sector. They note renewable liquid and gaseous transport 

fuels of non-biological origin shall be taken into account by Member States in calculating 

their renewable energy share in transport, while such action is only optional for recycled 

carbon fuels. They note there are no relevant policies supporting advanced alternative 

fuels as covered in their report outside of Europe. 

LBST (2019) further consider it likely, given the growth in renewable electricity, that 

more power-to-x pathways will appear in the future, although the degree to which that 

will occur remains unclear. A similar trend of future growth in power-to-x fuels (i.e. with 

more H2 production from renewable power) is seen in the JRC EU Times model. Although 

it is worth reiterating that this report did not consider H2 as a final fuel in itself, but 

rather considered it’s growing importance as a feedstock (to be combined with carbon) 

thus making other final fuels.  

Regarding pathways with low TRL, the report notes they will be able to benefit from 

European as well as national R&D grants (thus hopefully helping improve their TRL and 

helping them get closer to eventually having a market presence). However the report 

cautions that such fuels will be competing with other low or zero emission options in 

transport on availability and cost on a total cost of ownership basis. The vast majority of 

advanced fuels considered in this report fall into the electrofuels category, whose cost is 

mainly driven by the cost of the electricity used as their ‘feedstock’. In the EU, different 

taxes and levies make up a large share of the electricity price. LBST (2019) conclude by 

saying how these taxes and levies apply when using renewable electricity to produce 

electrofuels will be the decisive factor for their cost competitiveness. It is also worth 

noting that most advanced alternative fuel projects or plants considered in this report are 

EU-based. This raises the possibility that EU companies could market their technologies 

to areas outside of the EU. This should be considered alongside the fact that the main 

issue with the majority of these projects is not a technical one, but is due to the cost of 

electricity, so this apparent EU advantage may not be as significant as initially appears. 
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List of abbreviations and definitions 

CCU Carbon capture and use 

CH4 Methane 

CO2 Carbon dioxide 

CRL Commercial Readiness Level 

DAC Direct air capture 

EtOH Ethanol 

EU European Union 

FAO Food and Agriculture Organisation of the United Nations 

FT Fischer-Tropsch 

JRC European Commission’s Joint Research Centre 

KW Kilowatt 

LBST Ludwig-Bölkow-Systemtechnik 

LCEO Low Carbon Energy Observatory 

LR Learning rate 

MEA Mono-ethanolamine 

MRL Market Readiness Level 

MW Megawatt 

NDA No data available 

Nm³ Norm cubic meter 

PEC Photo-catalysis/photo-electrochemical cell 

PEM Proton exchange membrane (electrolyser, fuel cell) 

PJ Petajoules 

PtL Power to liquid 

PtX or P2x   Power to X (where x can be a liquid or a gaseous fuel) 

PWS Pressurized water scrubbing 

RED Renewable Energy Directive 

RoW Rest of the World 

RWGS Reverse water gas shift 

R&D Research and Development 

SOEC Solid oxide electrolysis cell 

TRL Technology Readiness Level 

US United States 
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EXECUTIVE SUMMARY 

The pathways investigated in this study have a wide range of technology readiness levels 
(TRL). A high technology readiness is a necessary prerequisite for market entry, which is 
represented by the performance indicator ‘market readiness level’ (MRL). For further 
differentiation of different technologies and their economic performance on the market, a 
‘commercial readiness level’ (CRL) is included here.  

Table 1: Overview over technology, market, and commercial readiness of 

components and pathways investigated in this study 
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1 INTRODUCTION, MOTIVATION AND METHODOLOGY 

Increasing European transport volume lead to growing energy demand as well as to 
environmental and climate challenges. In addition to improving vehicle efficiency and 
shifting transport to more environmentally friendly transport modes (public transport, 
transport of goods via train), increasing the share of renewable energy used for transport 
is a key element in the European energy and climate strategy. While using renewable 
electricity in battery electric and fuel cell electric drive trains provide the highest energy 
efficiency and is, therefore, expected to be the prime choice in many transport 
applications, advanced alternative fuels based on synthetically produced ‘green’ 
hydrocarbons using atmospheric or otherwise captured carbon dioxide may also play a 
relevant role in the future. 

The report provides comprehensive information on the up-to-date market status and likely 
development trends until 2030 for selected advanced alternative fuel technologies, giving 
an indication on which of these technologies are more likely to become commercial in the 
future.  

Table 2 shows the alternative fuels conversion pathways and sub-technologies to be 
included in the report. Further technologies will be added in the course of the analysis 
where appropriate.  

Table 2: Alternative fuels conversion pathways and sub-technologies 

included in this report 
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2 MARKET OVERVIEW 

2.1 Definition of various readiness levels 

The technology readiness level (TRL) describes the maturity of a technology. The market 
readiness level (MRL) correlates with the TRL. Furthermore, the commercial readiness 
level (CRL) can be applied.  

Table 3 shows the TRL according to [Horizon 2020], the associated MRL according to 
[Muradovich 2017] and the associated CRL.  

Table 3: Technology Readiness Level (TRL) and Market Readiness Level 

(MRL) 
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Figure 1 shows the overlap between TRL and CRL.  



ADVANCED ALTERNATIVE FUELS · Final Report 
Market overview 

  2-11 

 

Figure 1: Overlap between TRL and CRL 

2.2 Taxonomy and definitions 

2.2.1 Power-to-X (PtX) 

The concept of power-to-X comprises a range of electricity-based fuels (sometimes also 
referred to as e-fuels) and their application in various sectors (power-to-heat, power-to-
fuel, power-to-chemicals, etc.). This has resulted in a range of wordings that resemble 
different sets and sub-sets of power-to-X aspects. In [Bünger et al. 2017], a taxonomy for 
the power-to-X family of terms and key processes has been developed as depicted in 
Figure 2. 

 

Figure 2: Power-to-X (PtX) family of terms and key processes (graphic: 

LBST adapted from [Bünger et al. 2017]) 

With the exception of power-to-heat (PtH), all PtX pathways depicted in Figure 2 comprise 
a chemical energy carrier. 

Commercial 

Scale

Supported 

Commercial

1 2 3 4 5 6 7 8 9

2 3 4 5 61

Commercial readiness

Competitive 

Commercial

Deployment

Technology readiness (TRL)

Research & Development Demonstration

Pilot Scale



 ADVANCED ALTERNATIVE FUELS · Final Report 
 Market overview 

2-12 

2.2.2 Artificial photosynthesis 

‘Artificial photosynthesis’, ‘biological photosynthesis’, ‘biomimetic processes’, ‘hybrid 
systems’ and ‘power-to-x’ are just a few of many wordings used to cluster fuel conversion 
processes from renewable (biomass and non-biomass based) and sometimes also non-
renewable sources. In a current publication by [acatech et al. 2018] the following 
definitions are suggested: 

« • [Modified] biological photosynthesis: fuels and valuable 

products are produced by [genetically engineered] photosynthetic 

microorganisms. […] 

• Combining biological and nonbiological components to create 

hybrid systems: This makes use of renewably generated electricity 

for the electrolytic production of hydrogen and carbon monoxide 

which are converted into fuels and valuable products by 

microorganisms in bioreactors. 

• Power-to-X technologies: These processes use electricity from 

renewable sources [...] for the electrochemical synthesis of fuels or 

valuable products. These include, for instance, hydrogen, ethylene 

or, in multistage processes, methane (natural gas), alcohols or 

hydrocarbon-based plastics.  

• Artificial photosynthesis: solar energy is converted with the 

assistance of catalytic processes and used for producing fuels and 

valuable products. Production takes place in completely integrated 

systems such as for example "artificial leaves" or by directly 

combining photovoltaic and electrolysis systems. » 

Source: [acatech et al. 2018] 

The definitions result in a taxonomy as depicted in Figure 3.  

 

Figure 3: Taxonomy of artificial photosynthesis (graphic: LBST) 
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2.3 CO� capture for fuel production 

2.3.1 CO� from biogas upgrading plants 

The CO" content of biogas ranges between 25 and 55% [Eder & Schulz 2006]. The CO" 
can be separated from the biogas stream via scrubbing with amines, via pressure swing 
adsorption (PSA), or via cryogenic processes. All these technologies provide sufficient CO" 
purity (>99%). Further technologies are pressurized water scrubbing (PWS). However, 
PWS does not provide sufficient CO" purity. Cryogenic processes can supply very pure CO" 
and includes CO" liquefaction (see chapter 2.3.4).  

Both biogas upgrading via scrubbing with amines and biogas upgrading via PSA are 
technically mature (TRL = 9). Many plants have been installed worldwide for the 
upgrading of biogas for injection into the natural gas grid. The technology is commercially 
available and (CRL = 6, MRL = 6).  

In 2017 about 830 million Nm³ (29.7 PJ based on the LHV or about 1% of the natural gas 
consumption in Germany) of upgraded biogas has been injected into the natural gas grid 
in Germany [BNA & BKA 2019]. In Germany, there are more than 200 biogas upgrading 
plants with a capacity of about 120,000 Nm³ of methane per hour [dena 2019].  

Table 4 shows the electricity consumption of biogas upgrading via scrubbing with amines, 
PSA, and cryogenic processes, the existing installed capacity of these technologies in the 
EU, and the potential PtCH# capacity from these plants. The electricity consumption has 
been derived from [KTBL 2012] and the installed capacity has been derived from 
[Biogaspartner 2019]. In 2017 the total capacity of upgrading plants including PWS and 
membrane technologies in the EU amounted to about 170,000 Nm³ of methane per hour. 
Thereof, about 70,000 Nm³ of methane per hour come from technologies which can 
supply CO" with a sufficiently high purity.  

Table 4: CO� from biogas upgrading and potential PtCH% capacity from 

today’s installed capacity in the EU 
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Alternatively, if methane is the desired product the biogas stream including the CO" is 
directly fed into the methanation reactor together with the hydrogen (‘direct 
methanation’) [Rieke 2013]. The CO" fraction is converted to methane. The methane gas 
is swept through the methanation reactor like an inert gas. In this case no CO" separation 
step is required.  

2.3.2 CO� from flue gas 

State-of-the-art is the extraction of CO" from flue gas via scrubbing with amines e.g. 
monoethanolamine (MEA). The scrubbing agent washes out the CO" from the gas stream. 
The scrubbing agent is regenerated via heating up. The technology can be considered as 
mature (TRL = 9).  

Another process is described in [Taniguchi et al., 2014]. At first the CO" is washed out 
from the gas stream via scrubbing with K"CO' solution. Then, the CO" concentration in the 
scrubbing agent is elevated via electrodialysis and then stripped out by a vacuum pump. 
The process is at an early stage of research and development (TRL = 4).  

A process described in [Allam et al. 2006] is based on a combination of pressure swing 
adsorption (PSA) and temperature swing adsorption. Pilot tests have been carried out 
(TRL = 6).  

Table 5 shows the energy demand for various processes for the extraction of CO" from 
flue gases. The CO" concentration of the flue gas amounts ranges between 10 and 13%. 

Table 5: Processes for the extraction of CO� from flue gases, e.g. from 

biomass combustion or industrial processes 
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2.3.3 CO� from air 

There are various technologies for the separation of CO" from air developed by various 
research institutes and companies.  

2.3.3.1 Scrubbing/Electrodialysis 

One option to extract CO" from the air is via scrubbing using a scrubbing agent, such as 
sodium hydroxide (NaOH) or potassium hydroxide (KOH), which is converted to sodium 
carbonate (Na"CO') or potassium carbonate (K"CO'), respectively. The decomposition is 
done via electrodialysis.  

The ZSW process described in [Specht et al. 1996] is based on absorption with sodium 
hydroxide (NaOH), stripping the CO" with sulphuric acid (H"SO#), and regeneration of the 
Na"SO4 via electrodialysis. The following reactions occur: 

CO" absorption:  CO" + 2 NaOH   → Na"CO' + H"O 

Stripping:   Na"CO' + H"SO#  → Na"SO# + CO" + H"O 

Electrodialysis:  Na"SO# + H"O   → 2 NaOH + H"SO# 

The specific electricity consumption depends on the current density of the electrodialysis 
plant. The higher the current density the higher is the specific electricity consumption. At 
a current density of 100 mA per cm² of electrodialysis cell area the electricity consumption 
for the whole process including fan blower amounts to 430 kJ per mole of CO" or about 
9.8 MJ per kg of CO" [Specht et al. 1998]. [Specht, 1999] indicates an electricity 
consumption of about 12.3 MJ per kg of CO" due to a higher current density. (Sterner, 
2009) indicates an energy consumption of about 8.2 MJ per kg of CO" for the extraction of 
CO" from air via the ZSW process (thereof 6.4 MJ/kg for the electrodialysis for 
regeneration of the scrubbing agent). 

A process developed by the Palo Alto Research Center (PARC) uses KOH as scrubbing 
agent to separate CO" from air. In [Eisaman et al., 2010] a process has been described 
where KOH is used as scrubbing agent. The following reactions occur: 

CO" absorption:  2 KOH + CO"   → K"CO' + H"O 

    CO" + KOH   → KHCO' 

Electrodialysis:  K"CO' + H"O   → CO" + 2 KOH 

KHCO'    → CO" + KOH 

The electricity consumption is indicated with 300 kJ per mole of CO" (thereof 100 kJ for 
the electrodialysis of the KHCO' solution from CO" absorption with KOH) which leads to 
about 6.8 MJ per kg of CO". 
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2.3.3.2 Scrubbing/Calcination, Carbon Engineering 

The process which has been developed by the Canadian company Carbon Engineering 
(CE) consists of CO" absorption with KOH, formation of CaCO' from K"CO' and 
regeneration of the CaCO' via calcination and subsequently conversion to Ca(OH)". The 
following reactions occur: 

CO" absorption:  2 KOH + CO"   → K"CO' + H"O 

Regeneration of KOH:  K"CO' + Ca(OH)"  → 2 KOH + CaCO' 

Calcination:   CaCO'    → CaO + CO" 

Regeneration of Ca(OH)": CaO + H"O  → Ca(OH)" 

The calcination process requires very high temperatures of more than 800°C to convert 
the CaCO' back to CaO to recover the CO". Carbon Engineering assumes that natural gas 
is used as fuel for the calcination process and for the supply of electricity for the whole 
process and indicates a natural gas consumption of about 10 MJ per kg of CO" [CE 2015]. 
The theoretical minimum heat requirement for the calcination reaction amounts to about 
4.1 MJ per kg of CO". 

2.3.3.3 Adsorption/Desorption cycle, Climeworks 

Another option is the technology developed by the Swiss company Climeworks. 
Climeworks (a spinoff of the ETH Zurich) uses an adsorption/desorption cycle to extract 
CO" from the air. The CO" is chemically bound on a sorbent (in contrast to most 
adsorption processes chemisorption instead of physisorption is applied here). The 
regeneration of the sorbent is carried out by low temperature heat (95°C) [Climeworks 
2015a]. The process can also be referred to as a temperature swing adsorption (TSA) 
process [Climeworks, 2015b].  

 

Figure 4: Direct capture of CO� from air (image: Climeworks 2018) 
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Table 6 shows the required investment for direct air capture (DAC) plants based on the 
Climeworks technology.  

Table 6: Investment direct capture of CO� from air [Climeworks 2015] 
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Homepage: http://www.climeworks.com/ 

This process has also been applied at the methanation plant in Troia in Apulia in Italy (as 
part of the Horizon 2020 research project STORE&GO, see chapter A1.9) and at Sunfire’s 
power-to-liquid plant based on high temperature electrolysis with downstream Fischer-
Tropsch synthesis in Dresden in Germany (see chapter A3.3).  

2.3.3.4 Summary CO� capture for fuel production 

Table 7 shows an overview of various technologies for the direct capture of CO" from air.  

Table 7: Technologies for the CO� capture from air 
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Technologies involving electrodialysis has been tested in small lab-scale pilot plants 
(TRL = 4). The Climeworks technology has been installed in several pilot plants but it is 
still in an early stage of market introduction (TRL = 6, MRL = 3, CRL = 1).  

2.3.4 CO� liquefaction and storage 

Pure CO" is required with very low O" content to avoid damage of the catalysts used for 
methanation and syntheses. The CO" can be purified via liquefaction.  

Today, CO" generally is liquefied if it should be used for other purposes. A typical CO" 
liquefaction plant has been built at an ethanol plant in Lüdinghausen in North Rhine-
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Westphalia (NRW) in Germany which is in operation since 2013. The temperature of 
liquefied CO" amounts to about -25°C at an elevated pressure and the purity amounts to 
99.999% (vol.) [WIR 2014]. The oxygen content after liquefaction is less than 5 ppm 
[Buchhauser et al. 2005] which is sufficient for the catalysts used for methanation and 
synthesis. Table 8 shows the technical and economic data for the CO" liquefaction plant in 
Lüdinghausen.  

Table 8: CO� liquefaction plant, including storage in Lüdinghausen (NRW) 
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The technology is mature, commercially available, and installed at many CO" producing 
facilities e.g. ethanol plants (TRL = 9, MRL = 6, CRL = 6).  

2.4 Methane, methanol, and petrol/diesel produced from renewable 
electricity (PtX) using hydrogen from electrolysis and CO� 

Synthetic fuels from renewable electricity and CO" (power-to-methane, power-to-liquids) 
have entered fuel discussions over the last few years in Germany, the EU, and 
internationally (aviation). There are several factors driving synthetic fuels up the energy 
strategy and environmental policy agendas: 

� The re-evaluation of bioenergy for transport with regards to sustainability, availability 
and costs. 

� The vast technical availability potentials of renewable power from wind and solar. 

� The drastic decline in power generation costs of PV, onshore and offshore wind. 

� The drop-in quality of power-to-methane and power-to-liquids, i.e. the ability to use it 
without relevant changes in established methane, gasoline, kerosene, diesel or 
methanol infrastructures and uses. 

� Their potential for being strong levers to facilitate the ‘energy transition’ through 
system & sector integration, e.g. through flexible electrolyser operation for demand-
side management as well as the high energy densities of gaseous and liquid fuels for 
long-term storage and re-electrification. 

In the following, the current state of development is described for electricity-based 
methane, methanol, and gasoline/kerosene/diesel fuels. 
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2.4.1 Methane via Power-to-CHÀ 

2.4.1.1 Process description 

Hydrogen is generated via water electrolysis and sent to methanation. At the methanation 
step the following reaction occurs: 

4 H" + CO" → CH# + 2 H"OÁ     ∆HÂ = - 165 kJ 

4 H" + CO" → CH# + 2 H"OÃÄÅ     ∆HÂ = - 253 kJ 

The reaction is exothermal. There a two different methanation technologies, the catalytic 
methanation and the biological fermentation. The biological fermentation can be carried 
out in a separate bio-reactor or in-situ in the fermenter of a biogas plant.  

2.4.1.2 Market readiness level 

Several pilot plants have been installed both using catalytic and biological methanation. 
The technology is in an advanced stage of research and development and is mature 
leading to a technology readiness level (TRL) of 9. Research and Development issues are 
compact methanation reactors e.g. plate reactors adequate for fluctuating operation. 
Since the TRL = 9 the market readiness level (MRL) is 6. The commercial readiness (CRL) 
level can be set to 3.  

2.4.1.3 Estimates of specific financial investments and production costs  

As implementation examples of most conversion pathways are still in somewhat early 
commercial stages, available information on investment and operational cost of existing 
and planned plants and projects will be quite specific to the respective projects. We will 
list information on e.g. CAPEX, OPEX, resulting fuel cost or similar economic parameters 
within the project description for any project where these are available in the literature. It 
should be noted that economic boundary conditions may differ significantly for larger 
projects and for future projects based inter alia on economies of scale, learning rates, and 
regulatory changes. 

2.4.1.4 Existing and/or projected installations  

Almost all power-to-methane plants are installed in the EU. End 2018, 11 power-to-
methane plants with a capacity of about 7 MW of CH# have been in operation in the EU 
(Table 9). Further PtCH# plants are installed in Switzerland. For some plants the capacity is 
not known. Therefore, the capacity is slightly higher than shown in Table 9.  
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Table 9: PtCH4 capacity in the EU 

©bC? �b KLGHQ?CKb ©bpGH EKbD?HME?CKb >OQbbGp fbbKMbEGp

yV _ik T@i�Y ¾Sc[c Zvd [hvv ¾�dS¥

�P� _ikwF ¾Scg Zg [hg ¾c¥¥

�MPnGH Ko LOQb?D [Z h h h

 

Including plants under construction, planned, and announced plants the capacity will 
reach more than 16 MW of CH#.  

In most of the plants the CO" is derived from biogas upgrading or CO" in biogas streams 
via direct methanation using the CO" fraction of biogas. One plant uses direct air capture 
(DAC) of CO".  

Table 10: PtCH% plants in the EU 
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In chapter A1, some examples are presented. 
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2.4.1.5 Market expectations 

The future requirement of long-term electricity storage for high share of fluctuating 
renewables in the electricity supply system lead to significant demand of power-to-gas 
(PtG) plants including PtCH# plants.  

According to [Ausfelder et al. 2017] about 20 TWh of hydrogen (or methane) are required 
in Germany to bridge two weeks of low solar irradiation and simultaneously low wind 
speed (‘dark calm’). If the equivalent full load period of the PtCH# plant is assumed to be 
4000 h per year, the installed PtCH# capacity would amount to about 5 GW of methane 
alone in Germany. Extrapolation to the electricity demand of the EU would lead to about 
25 GW of methane.  

Furthermore, renewable transportation fuel is required to meet the Paris agreement to 
keep the global temperature increase below 1.5 to 2°C. In [LBST & dena 2017] various 
explorative scenarios for renewable transportation fuels in the EU to achieve a reduction 
of greenhouse gas emissions by 95% have been investigated. The final energy demand of 
road vehicles, rail, aviation, and navigation has been taken into account. For a strongly 
battery electric vehicle and fuel cell electric vehicle scenario about 520 PJ of methane are 
required in the EU (besides about 2000 PJ of hydrogen for FCEV, about 2400 PJ of 
electricity for BEV and trains, and about 5000 PJ of liquid transportation fuels). If the 
equivalent full load period of the PtCH# plant is assumed to be 4000 h per year, the 
installed PtCH# capacity would amount to about 36 GW of methane. In case of a more 
gaseous transportation fuel involving scenario about 3900 PJ of methane (besides about 
1300 PJ of hydrogen for FCEV) are required leading to a required PtCH# capacity of about 
271 GW of methane.  

2.4.2 Methanol via Power-to-Liquid 

2.4.2.1 Process description 

Hydrogen is converted to methanol via synthesis directly with CO" without requirement of 
reverse water gas shift (RWGS): 

3 H" + CO" → CH'OH + H"O 

The reaction is exothermal. The reaction is carried out at a temperature of 240 to 270°C 
and a pressure of 8 MPa [Brem 2013], [BIT & Silicon Fire 2013], [Silicon Fire 2013], [Van-
Dal & Bouallou 2013].  

2.4.2.2 Market readiness level 

The technical readiness level (TRL) of power-to-methanol is 9. As a result, the commercial 
readiness level (CRL) is at least 3 and the market readiness level (MRL) is 6.  
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2.4.2.3 Existing and/or projected installations 

Until now, there are only a few existing and projected installations in the EU. Another 
plant is located in Iceland. Most of the existing and projected installations are in the EU.  

Table 11: PtCHÎOH plants in the EU, under construction and planned 
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In chapter A23.3A2, some examples are presented. 

2.4.2.4 Market expectations 

The future requirement of long-term electricity storage for high share of fluctuating 
renewables in the electricity supply system lead to significant demand of power-to-gas 
(PtG) and/or power-to-liquid (PtL) plants including PtCH'OH plants.  

Methanol can be further processed to gasoline, kerosene, and diesel (see chapter 2.4.3). 
As a result, power-to-methanol has the same market expectations as the production of 
petrol and diesel via power to liquid.  

2.4.3 Petrol and diesel via Power-to-Liquid 

2.4.3.1 Process description 

There are two routes for the production of petrol and diesel via power-to-liquid: 

� Fischer-Tropsch route 

� Methanol route 

In case of the Fischer-Tropsch synthesis the CO" has to be converted to CO via reverse 
water gas shift reaction: 

CO" + H" → CO + H"O 

Then the hydrogen is converted to liquid hydrocarbons via the Fischer-Tropsch reaction: 

(2n + 1) H" + n CO → CÑH"ÑÒ" + n H"O 

To maximize the share of liquid Fischer-Tropsch products the Fischer-Tropsch reactor is 
operated in a way to generate a high share long-chain hydrocarbons (waxes). Then the 
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wax is sent to hydrocracking to generate the desired hydrocarbons naphtha, kerosene, 
and diesel. Isomerization may be applied to improve the cold flow properties of kerosene 
and diesel.  

In case of the methanol route the hydrogen is converted to methanol with CO" (see 
chapter 2.4.2). The methanol is converted to gasoline via the methanol-to-gasoline (MTG) 
process or to gasoline and diesel via the methanol-to-olefin-to-gasoline and diesel 
(MOGD) process. The following reactions occur: 

DME synthesis:  2�CH'OH  → CH'-O-CH'�+�H"O 

Olefin synthesis:  CH'-O-CH'  →�(CH")"�+�H"O 

Oligomerization:  0.5�n�(CH")"  → CÑH"Ñ 

Hydrotreating:  CÑH"Ñ�+�H" → CÑH"ÑÒ" 

The conversion of methanol to olefins over ZSM-5 catalyst was discovered by Mobil 
scientists in the 1970ies, together with the similar process of conversion of methanol to 
gasoline. A MOGD process has been developed subsequently [Avidan 1988]. One of the 
first large MTG plants has been installed in 1985 in New Zealand to produce gasoline and 
was operated until 1997 [Helton & Hindman 2014], [Tabak et al. 1986]. Another MTG 
plants have been built in 2009 in the Shanxi Province in China with a capacity of 2500 
barrel of gasoline per day (~300 t/d) and in 2011 with a capacity of 25,000 barrel of 
gasoline per day (~3000 t/d) [Helton & Hindman 2014]. The MTG and the MOGD process 
can be considered as mature (TRL = 9) and commercially available (MRL = 6).  

Today, the MTG process is provided by ExxonMobile and Haldor Topsoe (TIGAS: Topsoe 
Improved Gasoline Synthesis). Air Liquide provides a methanol-to-olefin process for the 
production of propylene (methanol-to-propylene - MTP) which is an intermediate step to 
produced gasoline, kerosene, and diesel. Air Liquide builds MTG plants using 
ExxonMobile technology.  

2.4.3.2 Market readiness level 

The technical readiness level (TRL) of power-to-liquid via the Fischer-Tropsch route 
including reverse water gas shift (RWGS) but without CO" supply is 9. As a result, the 
commercial readiness level (CRL) is at least 3 and the market readiness level (MRL) is 6.  

2.4.3.3 Existing and/or projected installations 

End 2019, there were two plants in operation in the EU. The Sunfire PtL plant in Dresden 
meanwhile is out of operation. However, there are 2 plants announced. Furthermore, 
there are planned and announced plants in Switzerland, Norway, and Canada.  
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Table 12: Power-to-liquid plants for the production of petrol, kerosene, 

and diesel in the world 
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The Sundance Clean Methanol plant in Canada will only partly use hydrogen from water 
electrolysis (from a 20 MWÓ PEM electrolysis plant). The whole plant will consist of water 
electrolysis, autothermal reforming (ATR) of natural gas, methanol synthesis, and 
methanol-to-gasoline (MTG) process. The water electrolysis generates hydrogen which is 
added to the syngas generated by the ATR plant and supplies oxygen for a steam power 
plant with a natural gas fuelled oxy burner. The waste heat is used for greenhouses. 

Very lately, several large-scale plants in the multi-megawatt scale have been announced, 
especially in Germany in the context of the “Reallabor” funding framework. 

In chapter A3, some examples are presented. 

2.4.3.4 Market expectations 

Renewable transportation fuel is required to meet the Paris agreement to keep the global 
temperature increase below 1.5 to 2°C. In [LBST & dena 2017] various explorative 
scenarios for renewable transportation fuels in the EU to achieve a reduction of 
greenhouse gas emissions by 95% have been investigated. The final energy demand of 
road vehicles, rail, aviation, and navigation has been taken into account. Even for a 
strongly battery electric vehicle and fuel cell electric vehicle scenario about 5000 PJ of 
liquid transportation fuels are required in the EU in 2050 (besides about 2000 PJ of 
hydrogen for FCEV, about 2400 PJ of electricity for BEV and trains, and about 520 PJ of 
methane). If the equivalent full load period of the power-to-liquid (PtL) plant is assumed 
to be 4000 h per year, about 347 GW of PtL capacity has to be installed.  
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2.5 Methane, methanol, and petrol/diesel produced using hydrogen from 
artificial photosynthesis 

2.5.1 State of research of artificial photosynthesis 

A circle of national academies of science in Germany (Acatech, Leopoldina, Union) have 
recently published a report on the state of research, scientific-technological challenges, 
and perspectives of artificial photosynthesis [acatech et al. 2018]. 

With regards to the state of research on artificial photosynthesis, the authors of 
[acatech et al. 2018, p 5] come to the conclusion that while the  

« scientific basis for artificial photosynthesis has been thoroughly 

investigated over the last two decades [and while] highly 

promising test systems have already been developed in German 

and international projects which have primarily investigated and 

optimised sub-reactions of the overall processes [and while] the 

first relatively large power-to-X plants have already begun test 

operation, artificial photosynthesis [as a completely integrated, 

direct reaction system] in contrast still largely remains at the level 

of basic research ». 

The authors consider that “suitable [direct reaction] systems are so far still at the 
laboratory prototype stage which means that a reliable cost-benefit analysis and an 
economically justifiable outlook for the future are as yet not possible.”  

Regarding the main hurdles for the further development of direct reaction artificial 
photosynthesis, the authors refer to industry experts that see “scalability of the existing 
approaches as being the essential challenge.” [acatech et al. 2018, p 5] 

Furthermore, it is far from being self-evident why direct reaction systems have to have a 
better techno-economic performance compared to individual specialized processes in a 
production plant or compared to those that can be arranged to build value chains of 
intermediate products with possibly several downstream value chains (such as the 
concept of petro-chemical plants or bio-refineries). Separate processes allow for fit-for-
purpose scaling of individual processes in optimal operating conditions and intermediate 
products to be used for different purposes. Systems fully integrated with the aim of direct 
conversion regularly have to deal with challenges like reactor design trade-offs, 
inhabitation reactions and overall lower reaction kinetics resulting in sub-optimum 
design and performance. Another example (see the following chapter) is dispersed gas 
generation resulting in an integrated artificial photosynthesis process leading to higher 
efforts for product gas collection as opposed to dispersed electricity generation, electricity 
collection, which is then followed by a concentrated gas production in an integrated 
power-to-x plant.  



 ADVANCED ALTERNATIVE FUELS · Final Report 
 Market overview 

2-26 

2.5.2 Example pathways for (direct reaction) artificial photosynthesis  

These technologies are at an early stage of research and development. 

In the following, examples for recent technology developments in the field of artificial 
photosynthesis are given. 

a) Photo-catalysis (photo-electrochemical cells – PEC) 

The conventional way of producing hydrogen from solar energy comprises two single 
process steps. First, electricity is generated via photovoltaic cells. Secondly, the electricity 
drives an electrolyser which splits water into oxygen and hydrogen.  

Photo-electrochemical cells (PEC) combine photovoltaic electricity generation and 
electrolysis in a single process. A photo-electrochemical cell has similarities to a 
photovoltaic cell (PV). Basically, a PV-cell separates electrons and holes in the 
semiconductor material. The electric current via external loads recycles the electrons. The 
PEC-device separates anode and cathode via an electrolyte in between them. It consumes 
the free electrons at the solar irradiated cathode by the formation of neutral hydrogen 
molecules from positive protons (HÒ), which are attracted by the cathode during the water 
splitting process. Negative oxygen ions (usually bound in negatively charged OHÔ ions) are 
attracted by the anode where they are transformed in neutral oxygen molecules by 
stripping off their surplus electrons at the anode. A current recycles the electrons back to 
the anode. The major difference of PV-cells and PEC-devices is that anode and cathode 
are separated by an electrolyte. 

Basically, four different technological realisations have been investigated in the literature: 

� Type I: Nanoparticles consisting of hematite (Fe"O') and thin catalyst layers which are 
mixed in a single compartment with colloidal suspension. The whole cell is 
encapsulated while the mixed oxygen/hydrogen gas is removed and collected through 
a pipe (dispersed gas handling). 

� Type II: Nanoparticles consisting of hematite (Fe"O') and thin catalyst layers which are 
mixed in a dual compartment with colloidal suspension. The compartments are 
doubled, alternating rows collecting hydrogen and oxygen, respectively. 

� Type III: Planar PEC-array, as explained above. 

� Type IV: Planar high efficiency PEC arrays which are irradiated by concentrated solar 
light (enhancement by a factor of 10 or more). 

Each of these types has its advantages and disadvantages, which are shortly explained 
below. 

Figure 5 depicts a Type III as an example, where the anode is irradiated. Type IV reactors 
are similar with the difference that the incoming solar radiation is concentrated to higher 
power density requiring high power anode materials (e.g. GaAs-compounds). The 
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absorbed energy shifts the valence electrons into the conduction band leaving holes in the 
valence band. These holes are neutralised with electrons from the decomposition of the 
negative OHÔ-radicals into oxygen molecules and water. The surplus electrons in the 
conduction band move to the cathode. At the cathode, water molecules are dissociated 
into hydrogen molecules and OHÔ-radicals by consuming the electrons which are supplied 
by the electric current once anode and cathode are connected. The OH- -radicals move 
through the electrolyte to the anode where they are decomposed as already explained. 

 

Figure 5:  Schematic view of a Type III (planar) photo-electrochemical 

device for hydrogen production from solar energy (graphic: 

LBST) 

 

Figure 6:  Schematic view of a Type I or Type II nanoparticulate photo-

electrochemical device for hydrogen production from solar 

energy. The nanoparticulates are suspended in the electrolyte 

(graphic: LBST) 
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Inputs to the process are: 

Õ Solar photons which provide the required energy 

Õ Water (electrolyte) serving as “fuel” for the hydrogen production. 

PECs are currently at a low stage of research and development with TRL 2 to 5.   

Some PECs use nanoparticles (type I, II), while others require rare elements (type III, IV). 

 Actors in the field 

� Delft University of Technology, The Netherlands,  
http://www.tudelft.nl/en/current/latest-news/article/detail/tu-delft-verbetert-productie-
vanwaterstof-uit-zonlicht/ (Roel Van de Krol) 

� Department of Chemical System Engineering, School of Engineering, The University of 
Tokyo, Tokyo, Japan 

� EPFL Lausanne, Micheal Graetzel, Switzerland  

� Fritz-Haber-Institute of the Max-Planck-Society, Theory Department, Berlin, Germany 

� Hawaii Natural Energy Institute, School of Ocean and Earth Science and Technology 
University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA (E. Miller, R. Rocheleau), 
see http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/30535x.pdf (Miller 2001) 

� Helmholtz Zentrum Berlin, Germany, http://www.helmholtz-
berlin.de/pubbin/news_seite?nid=13764&sprache=de&typoid=1 (van de Krol) 

� Helmholtz-Gesellschaft (Prof. J. de Kol) 

� Max-Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, 
Research Campus Golm, Postdam, Germany 

� National Renewable Energy Laboratory (NREL), USA, 
http://techportal.eere.energy.gov/technology.do/techID=1076  

� Research Institute of Photocatalysis, State Key Laboratory Breeding Base of 
Photocatalysis, Fuzhou University, Fuzhou, China 

� University of Stuttgart, Institute for Materials Science (Prof. Dr. Anke Weidenkaff) 

b) SoCalGas/Opus12 PEMEL direct methanation – Berkeley (California), USA 

Status: Ongoing 

Participants: Southern California Gas Co. (SoCalGas), Opus 12 

Characteristics: Power-to-methane (PEM single conversion) 

Description: Southern California Gas Co. (SoCalGas) and Opus 12 today announced the 
successful demonstration of a new process to convert the carbon dioxide in raw biogas to 
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methane in a single electrochemical step. Opus 12, a clean-energy startup incubated in 
the Cyclotron Road program at Lawrence Berkeley National Lab, used a new type of 
Polymer Electrolyte Membrane (PEM) electrolyser to convert carbon dioxide to methane.  

The nine-month study was funded by SoCalGas along with two start-up-funding 
organizations, the Rocket Fund of Caltech's FLOW program and Elemental Excelerator.   

This feasibility study was the first phase of research that will also explore new catalysts, 
modifying the catalyst layer formulation, and other ways to enhance the system's 
methane conversion performance.  

Source: https://www.sempra.com/newsroom/press-releases/socalgas-and-opus-12-
successfully-demonstrate-technology-simplifies  

Opus 12, a US-based clean-energy startup incubated in the Cyclotron Road program at 
Lawrence Berkeley National Laboratory, California, used a new type of Polymer Electrolyte 
Membrane (PEM) electrolyzer to convert carbon dioxide (CO") to methane (CH#), showing 
that instead of wasting the CO" in raw biogas, it can be converted to methane using 
renewable electricity. 

Source: https://bioenergyinternational.com/biogas/socalgas-opus-12-successfully-
demonstrate-power-gas-technology  

Homepage: https://www.sempra.com/newsroom/press-releases/socalgas-and-opus-12-
successfully-demonstrate-technology-simplifies 

2.6 Ethanol from microbial fermentation of industrial off-gases by 
bacteria 

2.6.1 Process description 

Syngas consisting of CO", CO and H" is converted to ethanol via fermentation. The process 
is capable to use a wide range of syngas composition. Even pure CO can be used as 
feedstock. According to [Phillips et al. 2017] the following reactions can occur: 

6 CO + 3 H"O  → C"HÖOH + 4 CO" 

5 CO + H" + 2 H"O  → C"HÖOH + 3 CO" 

4 CO + 2 H" + H"O  → C"HÖOH + 2 CO" 

3 CO + 3 H"   → C"HÖOH + CO" 

2 CO + 4 H"   → C"HÖOH + H"O 

CO + 5 H" + CO"  → C"HÖOH + 2 H"O 

2 CO" + 6 H"   → C"HÖOH + 3 H"O 
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The synthesis gas can be derived from gasification of biomass and municipal solid waste, 
from industrial waste gases, and from water electrolysis where the CO" is separated from 
air.  

2.6.2 Market readiness level 

A pilot plant has been built in New Zealand in 2008. Pre-commercial plants have been 
built at Baosteel in China in 2012, at Capital Steel in China in 2013, and at WBT in Taiwan 
in 2014. A commercial plant had been built in Shougang in China in 2018. Further 
commercial plants are under construction at AcelorMittal in Belgium, at Indian Oil in 
India, at Aemetis in the USA, and in Swayana in South Africa [LanzaTech 2018].  

The TRL is 9. As a result, the commercial readiness level (CRL) is at least 3 and the market 
readiness level (MRL) is 6.   

2.6.3 Existing and/or projected installations 

Participants: LanzaTech, Chicago, Illinois, USA 

Characteristics: Biological conversion of gas mixtures consisting of H", CO, and CO" to 
ethanol (gas fermentation).  

Description: LanzaTech uses a genetically modified C. autoethanogenum strain to 
convert gas mixtures consisting of CO", CO and H" into ethanol [Anggraini et al. 2018]. 
The LanzaTech process consists of gas reception, syngas compression, fermentation to 
ethanol, and product recovery.  

Table 13 shows pilot and pre-commercial plants based on the LanzaTech process.  

Table 13: Pilot and pre-commercial plants based on the LanzaTech process 
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Table 14 shows commercial plants based on the LanzaTech process.  

The LanzaTech plant at AcelorMittal in Ghent in Belgium has a capacity of about 
21 million gal per year or about 80 million l of ethanol per year [AcelorMittal 2018], 
[CNBC 2018]. The project involves a combined investment package of over €100 million 
from ArcelorMittal, EU Horizon 2020 and the European Investment Bank, and will start to 
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yield results in 2019 [AcelorMittal 2018]. In [LanzaTech 2018] the plant at AcelorMittal is 
called ‘commercial’ plant. In [AcelorMittal 2018] the plant is called ‘demonstration’ 
project.  

The ethanol production capacity of the LanzaTech plant at Indian oil will amount to about 
11 million gal per year, that of the plant at Aemetis will amount to about 12 million gal 
per year, that of the plant at Shougang will amount to about 16 million gal per year, and 
that of the plant at Swayana will amounts to about 17 million gal per year [CNBC 2018].  

Table 14: Commercial plants based on the LanzaTech process under 

construction 
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2.6.4 Market expectations 

LanzaTech focus on waste gases from steel production plants. However, if blast furnaces 
are replaced by direct reduction processes, less CO rich waste gases will be available. The 
advantage of direct reduction of iron ore is that hydrogen generated via water electrolysis 
with electricity from renewable energy sources can be used. A pilot plant for the 
production of steel via direct reduction of iron ore using renewable hydrogen is planned in 
Luleå in Norrbotten iron ore fields in Sweden [HYBRIT 2017].  

On the other hand, the LanzaTech process also can convert mixtures of CO" and H" 
generated by water electrolysis to ethanol leading to market expectations similar to other 
power-to-liquid technologies (see chapter 2.4.2 and chapter 2.4.3).  

2.7 Ethanol from microbial fermentation of syngas from sewage gases 
and natural gas by bacteria 

One way of thermo-catalytic reforming is followed by EU research project ‘2synfuel’ 
(2017-2021, http://www.tosynfuel.eu), with products H"-rich synthesis gas, biochar, and 
liquid bio-oil. 
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Another way is the plasma-supported conversion of waste streams as e.g. pursued by US 
technology provider InEnTec from Richland/WA (http://www.inentec.com). 

The biological fermentation of syngas to ethanol follows the same lines as described in 
chapter 2.6 for using industrial off-gases. 

The overall pathway is depicted in Figure 7.  

 

Figure 7: Pathway for ethanol production via fermentation of syngas from 

thermos-catalytic reformation of gas from fossil and biogenic 

origin 
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3 INCENTIVES AND SUPPORT POLICIES TO TECHNOLOGY INVESTMENT AND 

DEPLOYMENT 

The greenhouse gas emission reduction goals agreed at the Paris climate conference 
(COP21) in December 2015 are the overarching drivers towards the introduction of low 
and zero emission advanced alternative fuels into the transport sector. Transport is one of 
the most significant contributors to these emissions but has shown the least progress of 
all emitting sectors in the past years. However, at present, corresponding incentives and 
support policies in most cases do not directly address advanced alternative fuels but 
rather provide a general framework for reducing sector emissions.  

In this section, we review prominent support mechanisms or incentives aiming at 
promoting advanced alternative fuels, both in the EU and globally. Where barriers to 
future technology development and market uptake are apparent, we comment on 
potential actions or policy instruments to overcome these. 

3.1 European Union policy 

In general, the European Commission addresses the following main areas of action in the 
transition to a future-oriented, environmentally friendly transport and mobility sector (see 
e.g. COM(2016) 501 Final) 

� Higher efficiency of the transport system 

� Low-emission alternative energies for transport 

� Low- and zero-emissions vehicles 

While the Europe on the Move package (COM/2017/0283 final) addresses the general 
boundary conditions for the future of mobility in the EU, including considerations on the 
transport and refuelling infrastructure, the above areas of action are addressed with 
specific measures and goals in the following European policies.  

� The recast of the Renewable Energy Directive (EU) 2018/2001 (RED II), essentially 
replacing the former Renewable Energy Directive from 2009 and also extending 
the current Fuel Quality Directive beyond 2020, targets a share of renewable 
energy within the final consumption of energy in the transport sector of at least 
14% by 2030. In the RED II, the electrofuels addressed in this report are included 
in the so-called “renewable liquid and gaseous transport fuels of non-biological 
origin”, as their energy content is derived from renewable sources other than 
biomass. Their renewable nature depends on the source of the electricity used for 
their production and Article 27 of the RED II outlines how this is to be taken into 
account. The waste-stream based fuels considered here are covered by the 
“recycled carbon fuels” category of the RED II. Both renewable liquid and gaseous 
transport fuels of non-biological origin and recycled carbon fuels are explicitly 
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covered in their contribution towards the renewable energy goals of the transport 
sector. However, while renewable liquid and gaseous transport fuels of non-
biological origin shall be taken into account by Member States in calculating the 
renewable energy share in transport, this is only optional for recycled carbon fuels 
(see RED II Articles 25 and 27). 

� Other European regulations limit GHG emission for new cars and vans including 
(EC) No 443/2009 and (EU) No 510/2011; tighter emission limits post 2020 have 
been discussed and are being implemented. However, these mainly address 
vehicle efficiency and, while hydrogen fuel cell electric vehicles are incentivised, 
the use of advanced alternative fuels in combustion engines generally does not 
count towards the respective emission goals. The discussed proposals for new 
lower emission standards do not include provisions for the use of advanced 
alternative fuels either, even though the automotive industry has been advocating 
it. 

� The Clean Vehicles Directive 2009/33/EC requires that energy and environmental 
impacts linked to the operation of vehicles over their whole lifetime are taken into 
account in public purchase decisions. As in the above directives, the Clean 
Vehicles Directive mainly targets vehicle efficiency and is not specific to fuels. The 
same holds for the Energy Efficiency Directive 2012/27/EU. However, a currently 
discussed revision of the Clean Vehicles Directive also counts vehicles using 
alternative fuels as defined in the Alternative Fuels Infrastructure Directive 
2014/94/EU as ‘clean vehicles’; such fuels include inter alia hydrogen and 
synthetic fuels. 

3.2 Rest of the world 

While electrofuel production is seeing prototype deployment in Europe, activities outside 
of Europe are still in their infancy (see task 1). As a result, there are no relevant policies 
supporting advanced alternative fuels as covered in this report outside of Europe. 

China is mainly promoting electric mobility for road transport under the scheme for so-
called New Energy Vehicles. After a recent policy change, subsidies for battery electric 
vehicles have been reduced but remain high for fuel cell electric vehicles.  

In the USA, an important policy for the promotion of alternative fuels is the national 
Renewable Fuel Standard (RFS) programme, which aims to increase the volume of 
renewable fuel that is blended into transportation fuels. The programme focuses strongly 
on biofuels. So far, advanced alternative fuels as covered in this report are not yet covered 
by the RFS programme. 
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3.3 Outlook and barriers 

Alternative fuels with a low TRL will generally be able to benefit from European as well as 
national research and development grants. However, eventually, advanced alternative 
fuels will be competing with other low or zero emission options in transport on 
availability and cost on a total cost of ownership basis. The cost of electrofuels is mainly 
driven by the underlying cost of electricity. In all European countries, various taxes and 
levies constitute a significant share of the electricity price. As a result, the question of 
which of these taxes and levies apply in what way when using renewable electricity to 
produce electrofuels is a decisive factor for the cost and resulting competitiveness of an 
advanced fuel. 
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ANNEX 

A1 METHANE VIA POWER-TO-CHþ 

A1.1 AFUL Chantrerie – MINERVE – Nantes, France 

Status: In operation since February 2018 

Participants: ADEME, Departmental Council 44, ENGIE-Cofely, FEDER, GRDF, GRTGaz, 
IMT Atlantic, Nantes Métropole, Polytech Nantes, Pays de la Loire Region, SYDELA, SyDEV 

Characteristics: 12 kWÓ electrolyzer, methanation 

Description: Supported by ADEME, Europe and the Pays de la Loire region, Minerve aims 
to store renewable energy as a gas. Placed on the building of a biomass boiler, the 
demonstrator consists of a 12 kWÓ electrolyser producing hydrogen which, in reaction 
with CO" in a methanation reactor, produces synthetic methane (CH#). The gas produced 
is then used as fuel for CNG vehicles. If necessary, the hydrogen can also feed directly to 
the boilers of gas boiler. The project was set up on the site of the Chantrerie in Nantes by 
the AFUL (Association Foncière Urbaine Libre), a consortium bringing together 
industrialists and schools. The overall amount of the transaction amounts to € 1,560,000.  

A1.2 Agricultural Centre at the Eichhof – Bad Hersfeld, Germany 

Status: In operation since January 2012. 

Participants: Fraunhofer IWES, ZSW, ETOGAS (today: Hitachi Zosen INOVA Etogas) 

Characteristics: 25 kW electrolyser, methanation. 

Description: In periods of excess electricity, hydrogen will be produced for subsequent 
methanation with CO" from a biogas plant. In Bad Hersfeld (Germany), CO" is not 
extracted from the biogas stream. Instead, the biogas stream including CO" is fed into the 
methanation plant (‘direct methanation’). Separate CO" extraction in a biogas upgrading 
facility is not required. Methanation of the CO" increases the methane content of the gas 
stream to over 90%. If the gas is stored locally (e.g. in storage balloons) and elaborate, 
cost-intensive con-version measures are not required, this process may be suitable for 
smaller biogas plant from 250 kWÓ (equal to about 750 kW methane) [IWES 2012], [IWES 
2013], [Etogas 1/2013]. Methane thus produced is reconverted to electricity like biogas. 
The output is 6 Nm³/h H" or 1.5 Nm³/h of methane, respectively [DVGW 2013].  

A1.3 AUDI Werlte – Werlte, Germany 

Status: In operation since June 2013. 
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Participants: AUDI AG, ETOGAS (today: Hitachi Zosen INOVA Etogas), EWE AG, MT 
BioMethan GmbH, ZSW, IWES 

Characteristics: Alkaline electrolysis, methanation, CO" from biogas, methane feed-in 
into the natural gas grid. 

Description: The facility consisting of alkaline electrolysis and methanation produces 
about 320 Nm³/h of synthetic methane (CH#). The CO" is supplied by a biogas plant. The 
CO" extraction from biogas is carried out via scrubbing with mono-ethanolamine (MEA). 
Re-generation of the scrubbing agent is carried out applying heat from the exothermic 
methanation process. The electrical power consumption amounts to about 6300 kW 
including all auxiliary power units (e.g. rectifier, pumps, fans, controls). In consequence, 
the total energy conversion efficiency is 51%. The 350 Nm³ product gas per hour reported 
in [Schoeber 2013] are likely to include impurities. Under the assumption that the 
reported 350 Nm³ refer to purified methane, the total energy conversion efficiency 
improves to 55%. This result is close to the 54% cited by AUDI. [Rieke 2013] reports an 
electricity consumption of 27,600 MWh for the production of 1000 t of methane 
(13,890 MWh in reference to the lower heating value). In consequence, the energy 
conversion efficiency is about 50%. 

The plant has been in operation since June 2013.  

A1.4 CO�RRECT – Niederaußem, Germany 

Status: The plant has been operated between February and December 2013 (duration of 
the project). 

Participants: Bayer Technology Services BTS, RWE Power, Siemens, Bayer Material 
Science BMS, et al. 

Characteristics: 300 kW electrolyser, methanation, CO" from flue gas from a lignite-fired 
power plant 

Description: The plant consists of a 300 kW electrolysis plant, methanation, and CO" 
extraction from flue gas from a lignite-fired power plant.  

The abbreviation CO"RRECT stands for CO" Reaction using Renewable Energies and 
Catalytic Technologies. In this research facility at RWE Power, a number of different 
catalysts for methanation are tested. The electrolyser was manufactured by Siemens and 
is tested for flexibility. The production of methanol is tested as well. The hydrogen output 
amounts to 50 Nm³/h.  
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Figure 8: Electrolyser at power plant Niederaußem, Germany (Source: 

RWE) 

The plant has been in operation since February 2013.  

A1.5 Compact biogas plant ‘EUCOlino’ with in-situ methanation – 
Schwandorf, Germany 

Status: In operation since November 2012. 

Participants: MicrobEnergy GmbH (affiliate of Viessmann) 

Characteristics: 108 kW, methanation. 

Description: The plant produces 21 Nm³/h of hydrogen or 5 Nm³/h of synthetic methane. 
Biogas is used as a CO" source. In contrast to catalytic methanation (e.g. the project in 
Werlte), here methanation is achieved biologically with microorganisms in-situ in the 
fermenter of the biogas plant. Thus, the methane content of the biogas stream at the exit 
of the fermenter is increased. The synthetic methane is used for electricity production 
along with biogas.  
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Figure 9: Compact biogas plant ‘EUCOlino’ in Schwandorf (Source: 

MicrobEnergy GmbH) 

A1.6 ETOGAS ZSW pilot plant – Stuttgart, Germany 

Status: In operation since October 2012. 

Participants: ZSW, IWES, ETOGAS (today: Hitachi Zosen INOVA Etogas), Hydrogenics 

Characteristics: 250 kW entire plant, methanation, methane feed-in into the natural gas 
grid. 

Description: At the ZSW, PtG plants with different configurations have been tested for a 
number of years. An alkaline pressure electrolyser was used in the past. The novel system 
works with an alkaline electrolyser, model HySTAT 60 by Hydrogenics, and produces 
60 Nm³ of hydrogen per hour fed into a subsequent methanation with a maximum output 
of 15 Nm³ of methane per hour. Daily methane production is reported to come to 
300 Nm', or an average of 12.5 Nm³ per hour. According to the manufacturer the 
electricity consumption of the electrolyser amounts to 5.2 kWh/Nm³ hydrogen. The 
electrical power consumption at full electrolyser load would thus amount to 312 kW.  

[Etogas 2/2013] reports a maximum electrical power consumption of 280 kW direct 
current (DC) with a hydrogen output of 65 Nm³ hydrogen per hour (including the rectifier, 
the electrical power consumption would be higher).  

[ZSW 2012] reports an electrical power consumption of 295 kW DC given an output of 
65 Nm³ hydrogen per hour. This hydrogen is converted into 15 Nm³ of methane per hour 
in the subsequent methanation plant. Both [Etogas 2/2013] and [ZSW 2012] report their 
data assuming a current density of 430 mA/cm², i.e. equal load on the electrolyser. 
Assuming an energy conversion efficiency of 95% for the rectifier, the resulting electrical 
power consumption approximately amounts to 311 kW. This is consistent with the 
312 kW reported above from the technical data published by Hydrogenics. The 
combination of an electrical power consumption of 312 kW and a methane output of 
15 Nm³/h result in an energy conversion efficiency of about 48%.  
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The output of 12.5 Nm³ CH# per hour are probably achieved with a low electrolyser load. 
The total energy conversion efficiency amounts to about 50% based on an electrical 
power consumption of 250 kW and a methane output of 12.5 Nm³/h. In all likelihood, the 
reported 250 kWÓ refer to the electrical power consumption after the rectifier (DC) and not 
at full electrolyser load.  

Waste heat is utilised within the institute. In August 2013, the produced gas reached 
natural gas standards (high methane content). 

 

Figure 10: PtG plant at the ZSW in Stuttgart, Germany (Source: ZSW 

Stuttgart) 

A1.7 Jupiter 1000 – Fos-sur-Mer, Bouches-du-Rhône, France 

Status: Under construction, start-up 2019 

Participants: GRTgaz (coordinator), ATMOSTAT (methanation reactor), CEA (R&D 
methanation reactor), CNR, Leroux & Lotz Technologies (CO" capture plant), Le Port de 
Marseille Fos, McPhy (electrolyser), RTE, TIGF (Transport et Infrastructures Gas France) 

Characteristics: Water electrolysis (alkaline and PEM), methanation, CO" capture from 
flue gas, CO" compression and storage 

Description: 500 kWÓ alkaline electrolysis capacity and 500 kWÓ PEM electrolysis capacity 
are installed (Manufacturer: McPhy). The hydrogen production capacity amounts to 
200 Nm³ per hour. A part of the hydrogen is sent to methanation. The capacity of the 
methanation plant amounts to 25 Nm³ of CH# per hour. A mixture of hydrogen and CH# is 
injected into the natural gas grid. Jupiter 1000 is co-financed by the European Union 
under the ERDF funds (regional developments), by the government as part of the 
‘Investissements d'Avenir’ program entrusted to ADEME and the Provence-Alpes-Côtes 
d'Azur regional council. 

Homepage: https://www.jupiter1000.eu 
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A1.8 Store&Go-Falkenhagen – Falkenhagen, Germany 

Status: In operation since May 2018 

Participants: 27 partners from six European states. The plant will be built and operated 
by Uniper in collaboration with Thyssenkrupp Industrial Solutions, the Deutscher Verein 
des Gas- und Wasserfaches (DVGW), and the Karlsruhe Institute of Technology (KIT).  

Characteristics: alkaline water electrolysis, catalytic methanation, direct air capture of 
CO" 

Description: The electrolysis plant has been supplied by Hydrogenics and has a capacity 
of about 2000 kWÓ generating 360 Nm³ of H" per hour which is not fully used for 
methanation. The electrolysis plant consists of 6 units, 60 Nm³ H"/h each. The capacity of 
the methanation plant is 57 m³ of CH# per hour. The project has received funding from the 
European Union's Horizon 2020 research and innovation programme under grant 
agreement No 691797. 

Homepage: https://www.storeandgo.info/demonstration-sites/germany 

 

A1.9 Store&Go-Puglia – Troia (Puglia), Italy 

Status: Under construction 

Participants: 27 partners from six European states 

Characteristics: alkaline water electrolysis, catalytic methanation, direct air capture of 
CO", CH# liquefaction 

Description: The plant will exploit hydrogen produced by the electrolyser inherited from 
the INGRID Project ID 24 (Hydrogenics, 4 units, total 1152 kWÓ, 240 Nm³ H"/h). For the 
project electrolysers with a capacity of 200 kWÓ will be used to produce 7.2 kg of liquefied 
methane per hour (100 kW CH# based on the LHV). The direct air capture (DAC) plant for 
CO" supply is supplied by the Swiss company Climeworks. The total electricity input 
including CO" supply and CH# liquefaction amounts to 246.1 kW leading to an efficiency 
of 45.7% based on the LHV.  

Homepage: https://www.storeandgo.info/demonstration-sites/italy 

A1.10 Viessmann research facility – Allendorf, Germany (with in-situ 
methanation) 

Status: The plant has been operated between September 2013 and August 2016 
(duration of the project). 

Participants: Viessmann 
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Characteristics: Biogas plant with associated PtG plant. 

Description: In August 2013, Viessmann opened a new biogas plant at the company 
head-quarters in Allendorf, Germany. The biogas plant has been extended by a PtG plant. 
Hydrogen produced with an electrolyser is methanated with the CO" fraction in the biogas 
stream and fed into the natural gas grid. Methanation is carried out biologically in situ in 
the fermenter of the bio-gas plant, similar to the MicrobEnergy plant in Schwandorf, 
Germany.  

A1.11 SoCalGas/NREL P2G+biomethanation demo – Golden (Colorado), USA 

Status: in operation 

Participants: National Renewable Energy Laboratory (NREL), Southern California Gas 
Company (SoCalGas), Proton/Nel, Electrochaea 

Characteristics: Power-to-H" with subsequent biological methanation 

Description: Demonstration of the first U.S. power-to-gas system for energy storage at 
the NREL Energy Systems Integration Facility (ESIF). The demonstration consists of the 
following pathway elements: Renewable power � Low-temperature water electrolyser 
(Proton Onsite M series electrolyser, Proton is a Nel company) � Biological methanation 
(700 L 18 bar bioreactor containing archaea microorganisms provided by Electrochaea) � 
Feed-into methane gas infrastructure.  

Sources:  

� https://www.protononsite.com/news-events/nel-proton-proud-have-provided-m-
series-pem-electrolyzer-stack-supplying-hydrogen-first  

� https://www.nrel.gov/docs/fy19osti/73025.pdf  

The hydrogen system at the ESIF stores more than 300 kg of gas at pressures up to 
12,700 psig.  
Source: https://www.nrel.gov/news/features/2017/undersea-microbes-provide-path-to-
energy-storage.html  

Objective: Power-to-gas performance characterisation to indicate the commercial viability 
of the biological methanation approach relative to other energy storage technologies and 
to provide insights into MW-scale system designs. The research team will combine these 
insights with renewable energy resource data to identify optimal locations in California 
and the western half of the U.S. power grid where this grid-scale energy storage system 
would be most economical.  

Source: https://www.nrel.gov/docs/fy18osti/68939.pdf  

Exploitation: This project will allow for:  
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� Improvements in the next-generation reactor design, currently conceived as being 
10-50 megawatts in capacity for large-scale, long-term energy storage systems 

� Large-scale hydrogen production, which can serve as a feedstock for a variety of 
chemical and energy needs, including transportation in hydrogen-powered fuel 
cell vehicles, ammonia production, and synthetic fuel production 

� Informing policy makers who may want to enable or incentivize the deployment 
and expansion of this large-scale energy storage system for utility grids 

Source: https://www.nrel.gov/docs/fy18osti/68939.pdf  

Homepage: https://www.socalgas.com/smart-energy/renewable-gas/power-to-gas  

A1.12 hybridge – Lingen (Lower Saxony), Germany 

Status: Announced as per February 2019 

Participants: Amprion (electricity transmission grid operator), Open Grid Europe (OGE, 
gas transmission grid operator) 

Characteristics: power-to-gas (PtG) project comprising power-to-hydrogen (PtH") and 
parts thereof to be synthesized to methane (PtCH#) 

Description: Amprion and Open Grid Europe (OGE) are planning to build a 100MW 
electrolysis plant along with hydrogen infrastructure in the district of Emsland in Lower 
Saxony in Germany. The project dubbed "hybridge" has progressed to a stage where the 
planning approval process can start. Electricity from renewable sources shall be converted 
into green hydrogen and partly into green methane. The project partners intend to also 
convert an existing OGE pipeline into a dedicated hydrogen pipeline. The partners expect 
project costs to be around € 150 million. In the medium to long term, the natural gas 
storage facilities in this the region can also be used for hydrogen storage. In the future, 
further parts of the gas infrastructure is planned to be converted to allow transportation 
of hydrogen to the Ruhr area and beyond. Small quantities of hydrogen can also directly 
be injected into the natural gas grid or the hydrogen to be converted into methane, which 
could then be fed into the natural gas pipeline system without any restrictions. 

The project realisation is subject to the development of an adequate regulatory 
framework that would allow for improving the project economics in the field. 

Source: https://ptg.amprion.net/Dokumente/Pressemitteilungen/110219-PM-Hybridge-
final-EN.pdf  

Homepage: www.hybridge.net  
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A2 METHANOL VIA POWER-TO-LIQUID 

A2.1 George Olah Renewable Methanol Plant – Svartsengi, Iceland 

Status: In operation since 2012 

Participants: Carbon Recycling International (CRI), Mitsubishi Hitachi Power Systems, 
Hydrogenics 

Characteristics: alkaline water electrolysis, methanol synthesis from H" and CO", CO" 
capture from a geothermal power plant 

Description: The capacity of the power-to-methanol plant amounts to 4000 t of 
methanol per year (~2.5 MW methanol based on the LHV). The plant is co-operated by 
Carbon Recycling International (CRI) at Svartsengi, near Grindavik in Iceland. The 
methanol has been certified by SGS Germany using a protocol established by ISCC in 
February 2018. According to this certificate the use of renewable methanol from the 
George Olah Renewable Methanol Plant releases 90% less CO" than the use of a 
comparable amount of energy from fossil fuels.  

Homepage: www.carbonrecycling.is 

 

Figure 11:  George Olah Renewable Methanol Plant, ThinkGeoEnergy, 

Licence CC BY 2.0, 2012 

A2.2 MefCO� – Niederaussem, Germany 

Status: Begin of operation in 2019 

Participants:  

� i-deals (Spain): Coordination, dissemination & exploitation. 

� National Institute of Chemistry (Slovenia): Catalysis and reaction engineering.  

� Mitsubishi Hitachi Power Systems Europe (Germany): System integrator.  
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� Cardiff Catalysis Institute (UK): Research in catalyst synthesis.  

� Carbon Recycling International (Iceland): CO" to methanol technology developer. 

� DIME - University of Genoa (Italy): Thermo-economic analysis and process 
optimisation.  

� Hydrogenics Europe (Belgium): Electrolyser technology developer.  

� University of Duisburg Essen (Germany): CO" capture technology provider. 

Characteristics: alkaline water electrolysis, methanol synthesis from H" and CO", CO" 
from flue gas 

Description: The plant will have a production capacity of 1 t of methanol per day 
(~230 kW of methanol based on the LHV) using 1.37 t of CO" and 0.19 t of H". The CO" is 
captured from flue gas from a coal power station.  

Homepage: http://www.mefco2.eu/news/visiting-mefco2-pilot-plant.php 

A2.3 Pilot plant from former Silicon Fire (now Swiss Liquid Future) – 
Altenrhein, CH (now in Oberhausen, Germany) 

Status: in operation since 2010 

Participants: Silicon Fire AG, Altenrhein (Kanton St. Gallen) 

Characteristics: alkaline water electrolysis, methanol synthesis from H" and CO", CO" 
from sewage plant 

Description: The capacity of the pilot plant amounts to about 1000 l of methanol per day 
(approximately 33 kg/hr). The commercial plant (model SLF 15) will have a capacity of 12 
t of methanol per day (2.77 MW methanol based on the LHV). The required investment 
amounts to about € 35 million (12,600 €/kWÿÓ���Ñ�Ã) [Thyssenkrupp 2018]. The electricity 
input including H" production but without CO" supply is indicated with 6 MW, [Swiss 
Liquid Future 2019] leading to a power-to-methanol efficiency of about 46%. A project 
implementation agreement Me2Go signed to build 5 plants at hydropower sites in 
Switzerland [Thyssenkrupp 2018].  

Homepage: http://www.swiss-liquid-future.ch 
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Figure 12: Pilot plant in Altenrhein, Kanton St. Gallen in Switzerland; the 

right picture shows the synthesis and the distillation column 

(picture: © Armin Grässl / Silicon Fire, 2011) 

A2.4 WaStraK – Emschermündung, Germany 

Status: Start of project in 2009; Begin of operation in September 2016; End of project 
2017 

Participants: Forschungsinstitut für Wasser- und Abfallwirtschaft an der RWTH (FIW); 
TUTTAHS & MEYER Ingenieurgesellschaft für Wasser-, Abwasser- und Energiewirtschaft 
mbH; Ingenieurbüro Redlich&Partner (IBR); Emschergenossenschaft 

Characteristics: Electrolysis, methanol synthesis 

Description: Methanol has been generated onsite a sewage plant in Emschermündung 
since September 2016. The methanol plant uses synthesis gas from steam reforming of 
desulphurised and dried biogas from the sewage plant plus hydrogen from water 
electrolysis.  
Source: https://www.lanuv.nrw.de/fileadmin/forschung/190202_WaStrak_NRW/20181212
_AB_WaStraK_II.pdf  

Homepage: https://www.fiw.rwth-
aachen.de/neo/index.php?id=594&tx_jppageteaser_pi1%5BbackId%5D=74  

A2.5 FReSMe – From Residual Steel gases to Methanol, Sweden 

Status: planned 

Participants: Carbon Recycling International (CRI); Swerea MEFOS; SSAB (formerly: 
Swedish Steel); Tata Steel Netherlands; Kisuma Chemicals (Netherlands); Array Industries 
(Netherlands); ECN/TNO 
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Characteristics: H" from water electrolysis and off-gas (H", CO, CO") from steel 
production, methanol synthesis 

Description: FReSMe stands for “From Residual Steel gases to Methanol”. The project 
integrates the technology from two previous EU funded projects: STEPWISE, that is 
focused on the CO/CO" capture and conversion to CO"+H", and MefCO", that involves 
power-to-methanol (chapter 2.4.2.3A2.2. The objective of the FReSMe project is to 
produce methanol for the ferry Stena Germanica (line Gothenburg – Kiel). The methanol 
will be produced from CO" recovered from an industrial blast furnace at SSAB in Luleå, 
and hydrogen recovered both from the blast furnace gas itself, as well as H" produced by 
electrolysis. The implementation of FReSMe encompasses:  

� Lab developments supporting the technology improvement 

� Modelling and simulation in order to optimize the processes 

� Pilot plan construction and test campaigns implementation 

� Life cycle analysis to evaluate the actual reduction achieves on GHG emissions 

Homepage: http://www.fresme.eu/ 

A2.6 E2Fuels – Haßfurt (Bavaria), Germany 

Status: Planned 

Participants: Siemens, MAN Energy Solutions, Stadtwerke Haßfurt 

Characteristics: power-to-methanol (PtL) 

Description: In this project the production and use of synthetic fuels from renewable 
electricity for use in stationary and mobile applications is investigated. 

In a first phase, a new methanol synthesis reactor is being designed (MAN Energy 
Solutions). Together with a 1.25 MWÓ PEM electrolyser (Siemens Silyzer200) and CO" 
supply the new reactor will be operated at Haßfurt for demonstration. The system 
dynamics of this plant are analysed to optimise the operation with fluctuating renewable 
power supply. The results will be used to identify potential levers for technology up-
scaling to bulk production size in future, for an in depth understanding of techno-
economic details of the concept to ultimately achieve a commercial readiness.  

In total, this project is carried out with 16 partners from industry and research. 

The multi-million investment project receives co-funding from the Federal German 
Ministry for Economics and Energy (BMWi). 

Homepage: http://www.es.mw.tum.de/en/research/projects/e2fuels/   
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A3 PETROL AND DIESEL VIA POWER-TO-LIQUID 

A3.1 ALIGN-CCUS WP 4 – Niederaussem, Germany 

Status: Begin of operation scheduled in November 2019 

Participants: 31 companies, research institutes, and universities from 5 countries:  

� Germany: Asahi Kasei Europe GmbH, FEV Europe GmbH, FZ Jülich, Mitsubishi Hitachi 
Power Systems Europe, RWE Power, RWTH Aachen University 

� The Netherlands: Energy Research Centre of Netherlands, Maasvlakte CCS Project, 
Rijksuniversiteit Groningen, TAQA Energy, TNO, University of Leiden 

� Norway: Bellona, IFE, NORCEM/Heidelberg Cement, NTNU, SINTEF M&C, SINTEF 
Petroleum Research, Technology Centre Mongstad, Tel-Tek, YaraRomania: CO" Club 
Association, GeoEcomar, NUSPA, PicOil 

� UK: British Geological Survey, Heriot-Watt University, Imperial College London, 
Scottish Enterprise, Tees Valley Combined Authority, University of Edinburgh, 
University of Sheffield 

Characteristics: Alkaline water electrolysis, methanol synthesis, DME synthesis, OME 
synthesis, CO" captured from flue gas from a coal power station 

Description: As a global first-of-a-kind project, ALIGN-CCUS will build and test a fully 
integrated carbon capture and use (CCU) chain at pilot scale in a real industrial 
environment. The pilot will be constructed at RWE’s Coal Innovation Centre in 
Niederaussem, Germany, where the company has operated a CO" capture system since 
2009. The project will include an electrolysis plant with a capacity of 120 kWÓ generating 
25 Nm³ of hydrogen per hour. The captured CO" and hydrogen will then be converted to 
methanol-based products, DME and OME, in a synthesis unit provided by Mitsubishi 
Hitachi Power Systems Europe. DME and OME can be used as diesel fuel. The electrolysis 
plant is provided by Asahi Kasei. The project has a total operating budget of € 23 million. 
The European WAR-NET ACT Cofond supports the project together with other sponsors 
(e.g. the Bundesministerium für Wirtschaft und Energie in Germany) with € 15 million.  

Homepage: https://www.alignccus.eu/about-project/work-package-4-co2-re-use 

A3.2 Sundance Clean Methanol – 23 km east of Chetwynd in north-eastern 
British Columbia, Canada 

Status: Planning, permitting 

Participants: Blue Fuel Energy, Siemens, McPhy 
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Characteristics: PEM based water electrolysis added to a gas-to-liquid (GTL) plant, 
methanol synthesis, methanol-to-gasoline (MtG), CO" captured from a natural gas fuelled 
power plant with oxy burner (O" from electrolysis plant).  

Description: The capacity of the electrolysis plant will amount to 20 MWÓ [Siemens 
2014]. The electricity is supplied by wind turbines nearby the facility. Besides hydrogen 
from the electrolysis plant synthesis gas from autothermal reforming (ATR) of natural gas 
is used as feedstock. The natural gas requirement will amount to about 3.8 million Nm³ 
per day (~1,580 MW of natural gas). Products are gasoline and LPG. The methanol-to-
gasoline plant will have a capacity of 16,000 barrels of gasoline per day (2,544 m³/d ~ 
1,900 t/d~ 950 MW gasoline based on the LHV) [Stantec 2016], [Blue Fuel Energy 2019]. 
The investment is indicated with CAN$ 2.5 billion. It has been communicated that a 
hurdle for the project is to find laborers for the construction of the plant located far away 
from cities [Blue Fuel Energy 2015].  

Homepage: http://bluefuelenergy.com/ 

A3.3 Sunfire PtL – Dresden, Germany 

Status: In operation 

Participants: Sunfire, Climeworks, Audi 

Characteristics: High temperature electrolysis using solid oxide electrolysis cells (SOEC), 
direct CO" capture from air (DAC), reverse water gas shift (RWGS), Fischer-Tropsch 
synthesis 

Description: In autumn of 2014, a demonstration plant was inaugurated in Dresden 
(Germany). The installed production capacity is about 1 barrel per day of crude PtL from 
Fischer-Tropsch synthesis. The concept comprises a high-temperature (solid-oxide) 
electrolyser using excess heat from Fischer-Tropsch synthesis. Electricity demand is thus 
reduced, increasing the PtL production efficiency (fuel output vs. electricity input).  

Homepage: https://www.sunfire.de/en/company/news/detail/sunfire-produces-
sustainable-crude-oil-alternative  

A3.4 Nordic Blue Crude – Herøya, Norway 

Status: Planned 

Participants: Nordic Blue Crude, Climeworks, Sunfire, EDL Anlagenbau 

Characteristics: power-to-syncrude 

Description:  

2019-01-01: Sunfire began the process of scaling-up the high-temperature co-electrolysis 
process to an industrial scale – initially with an input power of 150 kW (DC) – as part of 
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the ‘SynLink’ project (03EIV031A) funded by the Federal Ministry of Economics and 
Energy. This multipliable co-electrolysis module is to be used by Nordic Blue Crude, the 
Norwegian project partner. The first commercial plant is to be built there, and will 
produce 10 million litres or 8,000 t of the synthetic crude oil substitute (e-syncrude) 
annually on the basis of 20 MWÓ�ÄÑ.   
Source: https://www.sunfire.de/en/company/news/detail/breakthrough-for-power-to-x-
sunfire-puts-first-co-electrolysis-into-operation-and-starts-scaling  

2017-07: From 2020 the first plant shall start its operation in the industrial park Herøya in 
Norway. It will be operating with an electric capacity of 20 MW, producing 8,000 t/a 
syncrude. Nordic Blue Crude AS, Sunfire, Climeworks, EDL Anlagenbau and additional 
partners have started with the engineering. Part of the CO" is extracted on-site from the 
ambient air using the Direct Air Capture (DAC) technology (Climeworks). The syncrude 
consists of various hydrocarbons, making it comparable with crude oil. Refineries can use 
it as raw material for waxes, but also petrol, diesel, kerosene. The target-price per litre 
lies below 2 €.   
Source: https://www.sunfire.de/en/company/news/detail/first-commercial-plant-for-the-
production-of-blue-crude-planned-in-norway  

Homepage: https://www.nordicbluecrude.no  

A3.5 KEROSyN100 – Heide (Schleswig-Holstein), Germany 

Status: Announced as per July 2018 

Participants: Chemieanlagenbau Chemnitz GmbH, Raffinerie Heide GmbH, SKL 
Engineering & Contracting GmbH, TU Bergakademie Freiberg, Deutsche Gesellschaft für 
Luft- und Raumfahrt (DLR), Institut für Vernetzte Energiesysteme e.V., Lufthansa (off-take 
agreement) 

Characteristics: Power-to-liquids (synthetic jetfuel) 

Description:  

Phase 1: Plant design and basic engineering for the conversion of methanol from 
renewable power to jetfuel (power-to-jetfuel).  

Phase 2: Realisation of a demonstration plant at the Heide refinery. 

Project funding request titled „KEROSyN100: Entwicklung und Demonstration einer 
dynamischen, effizienten und skalierbaren Prozesskette für strombasiertes Kerosin – 
Phase 1“ with € 4.2 million over three years from the German Federal Ministry for 
Economics and Energy (BMWi) in the framework of „Energiewende im Verkehr: 
Sektorkopplung durch die Nutzung strombasierter Kraftstoffe“. 

Sources:  
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� https://www.internationales-verkehrswesen.de/forschungsprojekt-kerosyn100/  

� https://www.res.uni-bremen.de/index.php?id=85  

� https://www.uni-
bremen.de/de/universitaet/presse/pressemitteilungen/detailansicht/news/detail/Ne
ws/zukunftstraum-mit-gr%C3%BCnem-treibstoff-fliegen/  

Homepage: https://www.res.uni-bremen.de/index.php?id=85  

A3.6 GreenPower2Jet (GP2J) – Stade/Lingen (Lower Saxony), Germany 

Status: Announced as per April 2019 

Participants: Airbus, BP Lingen, BP Air, Dow, DLR, Hoyer Logistik, Easyjet, DHL, et al. 

Characteristics: Power-to-liquids (synthetic jetfuel) 

Description: The aim of the project ‘GreenPower2Jet’ (GP2J), after successful pre-
engineering, is to build an industrial-scale power-to-liquid plant (PtL) which will primarily 
supply sustainable synthetic hydrocarbons to be used in producing green, climate-neutral 
jet fuels. 

The project consortium includes the Technical University of Hamburg (TUHH, for project 
coordination), Airbus, BP (BP Lingen, Air BP), the German Aerospace Centre (DLR), Dow 
and Hoyer Logistik and, as potential customers for the fuel produced, DHL, easyjet, 
supported by the Hamburg Airport, GDH Transport und Containerlogistik, and the Flotte 
Hamburg (a subsidiary of Hamburg Port Authority).  

The plan is to put the idea of the project into practice over a funding period of five years. 

In the first step, after a six-month pre-engineering phase lasting until 2021/22, an 
industrial-scale PtL plant (based on so-called Fischer-Tropsch synthesis) can, in agreement 
with the partners, be built in Stade, at the DOW chemical company. The synthetic 
hydrocarbons produced there are to be delivered to BP’s refinery in Lingen, where they 
will be processed as the basis for the next production steps and then used to produce 
green, climate-neutral jet fuel. The plan is to use this fuel at Hamburg Airport on routes 
which are flown regularly, as well as for the first fuelling of Airbus planes in Hamburg-
Finkenwerder. In addition, “green” diesel is to be produced from the leftover by-products, 
and this diesel can be used in heavy goods vehicles and in the port of Hamburg, in the 
ships which regularly operate there. By today’s standards, none of the products from the 
portfolio produced can be manufactured economically, which means that regulatory 
incentives and funding are necessary in order for this technology, which is important for 
meeting the challenging targets for the reduction of GHGs, to continue to be developed. 

Homepage:   
https://intranet.tuhh.de/aktuell/pressemitteilung_einzeln.php?Lang=en&id=12037 
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COMPANY PROFILE OF LBST 

Ludwig-Bölkow-Systemtechnik GmbH (LBST) is an expert consultant for sustainable energy and 
mobility. With our expertise bridging technologies, markets, and policy we support international 
clients from industry, finance, politics, and non-governmental organisations in strategy, feasibility, 
and market assessments. International blue-chip companies trust in our reliable judgment. 

Our cutting-edge competence is based on over three decades of continuous experience, and on our 
interdisciplinary team of leading experts. 

LBST supports its clients with 

S����� & ���������� ������� techno-economic assessment; due diligence; 
energy and infrastructure concepts; 
feasibility studies; 

S������� ���������� product portfolio analysis, identifying new products and services; 
market analysis, decision support, and policy support; 

S������������� ���������� life cycle and carbon footprint analysis; 
natural resources assessment (energy, minerals, water); 
sustainability due diligence; 

C����������� project management, monitoring and assessment; and 

C�$����� �������� studies, briefings, expert workshops, trainings. 

Particular expertise exists in energy (renewables, energy storage, hydrogen and fuel cells) and 
mobility (fuels and drives, infrastructure, mobility concepts), with our work in sustainability cutting 
across all sectors. 

A key common denominator of all activities is the rigorous system approach, making sure all relevant 
elements of a tightly networked system are taken into account, providing our customers with a 
comprehensive and complete basis for their decisions. 

With our deep understanding of developments and technologies and our truly independent advice, 
we help our clients with sustainable decisions to secure their future. 
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GETTING IN TOUCH WITH THE EU 

In person 

All over the European Union there are hundreds of Europe Direct information centres. You can find the 
address of the centre nearest you at: https://europa.eu/european-union/contact_en 

On the phone or by email 

Europe Direct is a service that answers your questions about the European Union. You can contact this 
service: 

- by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls), 

- at the following standard number: +32 22999696, or 

- by electronic mail via: https://europa.eu/european-union/contact_en 

FINDING INFORMATION ABOUT THE EU 

Online 

Information about the European Union in all the official languages of the EU is available on the Europa 
website at: https://europa.eu/european-union/index_en 

EU publications 
You can download or order free and priced EU publications from EU Bookshop at: 

https://publications.europa.eu/en/publications. Multiple copies of free publications may be obtained by 

contacting Europe Direct or your local information centre (see https://europa.eu/european-

union/contact_en). 

https://europa.eu/european-union/contact_en
https://europa.eu/european-union/contact_en
https://europa.eu/european-union/index_en
https://publications.europa.eu/en/publications
https://europa.eu/european-union/contact_en
https://europa.eu/european-union/contact_en
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